Take it slow! Can feedback from a smart fork reduce eating speed?

Sander Hermansen, Jeana H. Frost, Eric Robinson, Monica Mars, Suzanne Higgs, & Roel C.J. Hermans

Introduction
Eating rate is a basic determinant of appetite regulation, as people who eat more slowly feel sated earlier and eat less. Unfortunately without assistance, eating rate is difficult to modify due to its highly automatic nature. These studies address the hypothesis that real-time feedback can reduce eating rate.

Intervention: the 10sFork
The 10sFork, designed by Slow Control, Paris, provides feedback to raise awareness of eating rate in order to help people eat more slowly. It records behaviour and provides real-time vibrotactile feedback on individual eating rates.

Efficacy Study
Does feedback delivered by the 10sFork reduce eating rate?

Method
Participants used the 10sFork to eat a standardized meal (pasta bolognese) in a laboratory setting. 123 participants (77 female, 46 male, age $m = 29.35 \pm 13.15$, body mass index (BMI) $m = 24.04 \pm 4.19$) were randomly assigned to either the experimental condition ($n = 64$), in which they received vibrotactile feedback from the fork when eating too fast (period between bites < 10 seconds), or a control condition ($n = 59$) in which they did not receive feedback from the fork.

Results
Participants in the experimental condition:
- ate significantly slower, $F(1,123) = 5.40, p = 0.02, d = 0.42$,
- had a higher success ratio, i.e. took less bites within a 10s timeframe, $F(1,123) = 24.20, p = 0.00, d = 0.9243$,
- took longer ($m = 9$ minutes, 53 seconds) to eat their meal than participants in the control condition ($m = 7$ minutes, 35 seconds), $F(1,117) = 11.929, p < 0.01, d = 0.64$,
- reported higher satiation after their meal than those in the control condition, $F(1,123) = 6.268, p = 0.04, d = 0.4588$,
- ate similar amounts of pasta than participants in the control condition, $F(1,123) = 0.81, p = 0.777$.

Qualitative User Experience Study
Is the 10sFork an acceptable and comfortable tool to reduce eating rate in real-life settings?

Method
11 participants (aged 18–35) used the fork both in a laboratory setting and at home. All participants were self-perceived fast eaters. We interviewed them on perceived efficacy, acceptability, comfort, accuracy, motivation, and sustained use of the fork.

Results
Participants feel the 10sFork is an acceptable tool to decelerate eating rate. The fork is generally seen as comfortable and sufficiently accurate. The vibrotactile feedback worked as expected, but the visual feedback largely remained unnoticed. Participants did not feel uncomfortable using the fork in a social setting.

Participants were more aware of their eating rate, but this did not always lead to behaviour change. Every participant tried to cheat the fork at some point. Sustained motivation to use the fork was limited because participants did not see themselves as the product’s target group.

Conclusions and further research
Vibrotactile feedback through a smart fork is an acceptable and comfortable means to reduce eating rate. Because of the fork’s vibrotactile feedback, participants ate slower, with extended meal duration and more time between bites.

In further research, we will test the sustained effect of vibrotactile feedback on eating rate in real life settings.