Thesaurus based Keyword Extraction

Luit Gazendam (Novay)
Christian Wartena (Novay)
Rogier Brussee (Univ. of Applied Sciences Utrecht)
Problem description

• Keywords used for organising and retrieval documents (including non textual ones)
• Problem:

Determine keywords automatically

• Operational problem:
 – Define relevance measure of terms
 – Select collection of terms based on relevance
 • Here, just rank
Keywords, world knowledge, informativity

- Relevance of term as keyword depends on:
 - **Importance** of term for the *document*
 - **Discriminative power** of term within *document collection*
 - **A priori criteria**
 - in a thesaurus
 - right word class,
 - non stopword,
 - …
Example: TF.IDF

- Consider TF.IDF
 - **Input:**
 - Document collection: \(\{d_1 \ldots d_N\} \)
 - Term collection: \(\{t_1 \ldots t_n\} \)
 - Count’s:
 - \(n(d,t) = \# \) occurrences of term \(t \) in document \(d \)
 - \(df(t) = \# \) documents containing \(t \) (doc frequency)
 - \(N = \# \) documents

 \[
 tf.idf(d,t) = n(d,t) \log(N/df(t))
 \]

 - \(n(d,t) \) : weighs importance of term in the document
 - \(N/df(t) \) : weighs importance of term in the doc collection
World knowledge from thesaurus structure

- Problem: What can we do if we do not have access to large document collection?
 - or there is no natural document collection

- Importance in the doc collection is really a proxy for importance of terms in “the world”.
 - Importance w.r.t. everything
 - ever written, English web, Information retrieval literature

- Thesauri are alternative sources of world knowledge
 - also required by many archives
Mission to Afghanistan uncertain
More and more parties are beginning to doubt the planned mission of 1100 Dutch soldiers to Afghanistan. Tomorrow, representatives of the Pentagon and the State department will come to the Hague for talks with high ranking civil servants. The Dutch cabinet will make its final decision on Friday.
Mission to Afghanistan uncertain
More and more parties are beginning to doubt the planned mission of 1100 Dutch soldiers to Afghanistan. Tomorrow, representatives of the Pentagon and the State department will come to the Hague for talks with high ranking civil servants. The Dutch cabinet will make its final decision on Friday.

......
Count lexical representations in a doc.

Prisons (1)

Camps (1)

Voting (1)

Missions (6)

Democratisation (1)

Prisoners of war (1)

Civil servants (1)

Governments (5)

Soldiers (5)

Ministers (1)

Prime ministers(1)
Ranking: frequency of terms (?)

- Prisons (1)
- Camps (1)
- Voting (1)
- Missions (6)
- Prisoners of war (1)
- Civil servants (1)
- Governments (5)
- Soldiers (5)
- Ministers (1)
- Prime ministers (1)
- Democratisation (1)
Centrality: realised relations in doc (order = 1)

- Prisons (1)
 - prison camps
 - prisoners
- Camps (1)
- Missions (6)
- Voting (1)
 - elections
- Democratisation (1)
- Governments (5)
 - ministries
 - forming of cabinets
 - heads of state
- Civil servants (1)
 - service professions
- Soldiers (5)
 - professions
- Ministers (1)
 - professions
- Prime ministers (1)
Ranking: frequency of terms (????)

- Prisons (1)
- Camps (1)
- Voting (1)
- Democratisation (1)
- Missions (6)
- Governments (5)
- Prime ministers (1)
- Prime ministers (1)
- Ministers (1)
- Forming of cabinets (1)
- Head of state (1)
- Elections (1)
- Public authorities (1)
- Professions (1)
- Service professions (1)
- Solders (5)
- Prisoners of war (1)
- Prisoners (1)
- Civil servants (1)
- Prisons camps (1)
Ranking: connectedness of terms!

- Prisons (1)
- Ministers (1)
- Prime ministers (1)
- Governments (5)
- Civil servants (1)
- Soldiers (5)
- Prisoners of war (1)
- Camps (1)
- Voting (1)
- Democratisation (1)
- Election (1)
- Public authorities
- Ministries
- Heads of state
- Forming of cabinets
- Professions
- Service professions
- Prisoner camps

connectedness of terms
TF.RR: Term frequency, Realised relations

- Select words in text that are concepts in the thesaurus
- Determine weight of (key)words by
 - Frequency
 - Number of thesaurus relations to other words in the text: central words in the text become higher weights

\[
\text{tf}_\text{rr}(t, d) = \text{tf}(t, d)\text{rr}(t, d)
\]

\[
\text{tf}(t, d) = 1 + \log(n(t, d))
\]

\[
\text{rr}(t, d) = 1 + \mu r_1(t, d) + \mu^2 r_2(t, d)
\]

- with \(n(t, d)\) the number of occurrences of \(t\) in \(d\),
- \(\mu = \alpha / \text{avlinks}\) where \(\text{avlinks}\) is the average out degree of the thesaurus
 - average number of relations a term has in the thesaurus
- We set \(\alpha = \frac{1}{2}\)
Evaluation

- Generate and rank keyword suggestions for TV-programs from contextual resources
 - 258 TV broadcasts
 - 362 context documents,
 - Length = 25 -- 7000 words, av = 1000
 - Thesaurus, so called GTAA (Common Thesaurus Audiovisual Archives)
 - #keywords = 3860, #relations = 20 591
 - #keywords = 1 -- 15, av = 5.7
 - Manual keywords ground truth for evaluation
 - Inter-annotator consistency 13% -- 77%, av = 44%
Results

![Graph showing precision and recall for various techniques, including tf.idf (terms), tf.idf (concepts), tf.rr, and concept frequency.]
Conclusion

• Using thesaurus relations improves on just counting concepts
• Results comparable to using a corpus. i.e.

 A good thesaurus is a reasonable alternative to having access to representative corpus
Keyword Extraction using Word Co-occurrence

Christian Warten (Novay)
Rogier Brussee (Univ. of Applied Sciences Utrecht)
Wout Slakhorst (Novay)
Problem description

- Keywords used for organising and retrieval documents (including non textual ones)

Problem:

Determine keywords automatically

Operational problem:
- Define relevance measure of terms
- Select collection of terms based on relevance
 - Here, just rank
Keywords, world knowledge, informativity

- Relevance of term as keyword depends on:
 - **Importance** of term for the document
 - **Discriminative power** of term within document collection
 - **A priori criteria**
 - in a thesaurus
 - right word class,
 - non stopword,
 - …
World knowledge from statistics

• Problem: What can we do if we do have access to large document collection?
 – assuming it is a natural document collection

• Importance in the doc collection is a (hopefully) a proxy for importance of terms in “the world”.
 – Importance w.r.t. everything

• Statistics of the collection becomes a source of world knowledge
 – OK to use broad external world knowledge
 • E.g. word class of terms
Predicting the term distribution

- **keyword** is short summary of content of a document
- Use **term distribution** of the document as proxy for the content
 - Bag words model.
 - Distributional hypothesis (Harris 1954)
- Good **keywords** should **predict** the **term distribution** of the document
Everything is a distribution

• **Term distribution** of a document:
 – $q_d(t)$ is the term distribution of d
 – “The fraction of term occurrences in d matching t

• **Document distribution** of a term
 – $Q_z(d)$ is the document distribution of z
 – “The fraction of term occurrences matching z found in d”

• **Background distribution** of the corpus
 – $q(t)$ is the fraction of term occurrences matching t
Co-occurrence distribution

• Co-occurrence distribution of a term

\[p_z(t) = \sum_d Q_z(d)q_d(t) \]

• Average distribution of terms co-occurring with \(t \).
Co-occurrence of tags
“average tag cloud” (Novay)
Co-occurrence of tags
“average tag cloud” (Novay)
Co-occurrence of tags
“average tag cloud” (Novay)
Relevance measure for terms:

• Relevance measure for term z
 - importance: ___
 – Closeness of p_z to document distribution q_d
• Specificity ___
 – Awayness of p_z from background q

• → need to specify distance measure!
Different distance measures for distributions

• **Kullback Leibler divergence** $D(p||q)$
 - #bits per term saved by compression on a term stream using true distribution p instead of estimate q.
 - Infinite if p not abs continuous wrt q!

• **Jensen Shannon divergence** $JSD(p,q)$
 - #bits per term saved by compression using streams distributed like p and q separately instead of mixture

• **Naive correlation coefficient** $r(p,p';q)$
 - Cosine similarity of $(p-q)$ and $(p'-q)$
Kullback Leibler and Jensen Shannon Divergence

- Kullback Leibler divergence

\[
D(p \parallel q) = \sum_t p(t) \log \left(\frac{p(t)}{q(t)} \right)
\]

\[\geq 0 \text{ with equality iff } p = q\]

- Jensen Shannon divergence

\[
JSD(p, q) = D(p \parallel 1/2 p + 1/2 q) + D(q \parallel 1/2 p + 1/2 q)
\]

- Correlation coefficient

\[
\sum_t (\bar{p}_z(t) - q(t))(\bar{q}_d(t) - q(t)) \sqrt{\sum_t (\bar{p}_z(t) - q(t))^2} \sqrt{\sum_t (\bar{q}_d(t) - q(t))^2}
\]
Relevance measures for terms

- Only weigh closeness of term to document distribution

\[jsd(z, d) = JSD(p_z, q_d) \]

- Weigh closeness of term to document and awayness to corpus

\[\Delta(z, d) = D(p_z \| q_d) - D(p_z \| q) = \sum_t p_z(t) \log \left(\frac{q_d(t)}{q(t)} \right) \]

- Correlate differences

\[r(z, d) = r(p_z, q_d ; q) \]
Evaluation

- Use 11000 ACM abstracts with keywords.
 - #keywords = 1—10, av = 4.5
 - 27336 distinct keywords,
 - 21634 used only once,
 - 2 used more than 100 times.
 - 21642, consists of more than one word.

- UIMA and based pipeline with some GATE components
Multiword detection

• Imperative to detect multiwords as candidate terms!
 – Algorithm: detect superabundant combinations taking word class into account using t-test (see Manning and Schütze)
 – detection algorithm identified 4817 multiwords.
 – Results sensitive to multiword extraction algorithm 😞, but all methods evaluated suffer 😊.
 – Only 52% of articles has a keyword that is selected as a candidate term after preprocessing. 52% is optimal!
 – Selected terms may be perfectly acceptable keywords
Evaluation BBC dataset

• 2879 BBC Program descriptions (Many very short)
 – #keywords = 1 -- 22 keywords, av = 2.9
 – 1748 distinct keywords,
 – 898 used once
 – 8 used more than a 100 times,
 – 792 keywords consist of multi word.
• Multiword detection algorithm found 168 multiwords.
• 57% of articles has a keyword selected as a candidate term
11000 ACM abstracts
2879 BBC abstracts
Conclusion

- Using co-occurrence data improves on tf-idf
- Slightly naive correlation coefficient works best.
- There is room for improvement
 - Christian Wartena has recently gotten good results for recommendation by using some clustering
 - Good multiword detection is really important.