Afstudeerscriptie

GENESI S

“Een nieuw begin”
Management samenvatting

Dit rapport beschrijft het verloop van mijn afstudeeropdracht.

De opdracht is uitgevoerd bij de afdeling Servicecentrum Automatisering van de gemeente Oss. De probleemstelling die centraal stond was “de vervanging van, het geleasde deel, van het serverpark voor 1 april 2007”. Een uitzondering hierop is de Citrixfarm geweest. Deze servers worden via een apart project vervangen. Op 1 april 2007 loopt het leasecontract van deze hardware af en wordt dan ingenomen door de leasemaatschappij. Het was dus erg belangrijk om voor 1 april 2007 de nieuwe infrastructuur gerealiseerd te hebben. Zou dit niet het geval geweest zijn dan zou het leasecontract verlengd moeten worden. Dit met alle financiële gevolgen van dien. De opdracht is in fases uitgevoerd elk met haar eigen doel.

I inventarisatiefase
Eerst moest er een inventarisatie plaats vinden van de componenten die per 1 april 2007 door de leasemaatschappij ingevorderd gaan worden. Dit is gebeurd op basis van methoden en technieken. Met betrekking tot de software is er een overzicht gemaakt om na het onderwerp te kunnen beoordelen welke software (licenties) herbruikbaar waren. In deze fase zijn tevens de wensen van de gemeente Oss onderzocht. Deze wilde een efficiënt en effectief werkend serverpark dat voorbereid was op de toekomst. Een onderdeel van deze fase is het plan van aanpak.

Analysefase
Tijdens deze analysefase is o.a. de huidige situatie en zijn de bestaande risico’s in kaart gebracht. Hieruit kwamen de volgende knelpunten naar voren: Redundantie, schaalbaarheid, performance, beschikbaarheid, dataopslag, TCO en het gebrek aan documentatie. Dit leverde genoeg informatie op om een gedegen functioneel-, detail- en technisch ontwerp te maken. Er is in deze fase besloten om een tweede SAN-omgeving te koppelen aan de bestaande SAN-omgeving. Deze keuze zorgt o.a. voor extra redundantie, continuïteit en schaalbaarheid die ontworpen is door de eigen beheerorganisatie.

Ontwerpfase
Er is in deze fase besloten te kiezen voor een implementatie van een Windows cluster infrastructuur. Deze, voor de gemeente Oss, nieuwe techniek zorgt voor een betere redundantie en continuïteit. De belangrijkste servers (mail, database, file, applicatie en backup) zijn in paren van twee gekoppeld om, bij uitval van één van de twee servers, de functionaliteit van deze uitgevallen server over te kunnen nemen. Dit zonder dat dit invloed heeft op deze functionaliteit. Deze fase heeft een functioneel-, detail- en technisch ontwerp voortgebracht. De blauwdruk, die hierdoor is ontstaan, heeft tevens gediend als basis voor de implementatie.

Aanbestedingfase
De totale kosten van dit project zijn binnen de Europese aanbestedingsnorm gebleven. De jaarlijkse leasekosten en de dure onderhoudskosten komen te vervallen. Voor de nieuwe componenten zijn wel onderhoudscontracten afgesloten maar het feit dat al deze nieuwe componenten standaard met 3 jaar garantie zijn geleverd maakt dat de onderhoudscontracten veel goedkoper zijn. En dit komt de TCO ten goede.

Implementatiefase
Tijdens de implementatiefase is het ontwerp daadwerkelijk omgezet in een werkend product. Deze fase heeft geen overlast opgeleverd voor de gebruikers en de continuïteit van de bedrijfsvoering is nooit in gevaar geweest.

Evaluatiefase
In deze fase is de nieuwe infrastructuur geëvalueerd en is er geïnventariseerd of aan alle gestelde eisen is (paragraaf 3.4 en 3.5) voldaan. Dat is het geval. Er is gedurende deze opdracht ook erg veel aandacht besteed aan het maken van documentatie. Dit heeft geresulteerd in een naslagwerk dat de basis vormt voor een nieuw te creëren beheershandboek.
Voorwoord

Op maandag 16 augustus werd ik, in mijn vakantie, gebeld door mijn toenmalige interim hoofd dhr. Jos Raemakers (Ik ben die man eeuwig dankbaar), of ik maar even na het werk wilde komen want er was een erg belangrijke vergadering belegd. Vanaf dat moment is mijn leven blijvend veranderd.

In deze vergadering werd mij verteld dat de gemeente Oss het heel erg op prijs zou stellen als ik samen met 2 andere collega’s de HBO opleiding “Duaal Systeem - en Netwerkbeheer” zou gaan volgen aan de Hoge school te Utrecht.

Dit was een schok, ik dacht dat iedereen gek geworden was......

Ik, Don Salimans, die op zijn 16e na het behalen van zijn LEAO diploma was gaan werken bij Karwei Bouwmarkt in ’s-Hertogenbosch, omdat hij de pest aan school had, zou op zijn 43ste moeten gaan studeren aan de Hoge school te Utrecht. Ik moet zeggen het klonk goed maar ik gaf me nog geen 3 maanden voordat ik overspannen thuis zou zitten (en ik was niet de enige die er zo over dacht). Er was er schijnbaar maar één gek geworden en dat was ik zelf. Ik stemde toe.

De eerste student die ik op mijn eerste schooldag zag, vertelde mij luchtig dat hij het wel even in 2 jaar ging halen en toen zonk de moed mij helemaal in de schoenen. Waar was ik in hemelsnaam aan begonnen. Hij is volgens mij binnen 2 lesdagen afgestudeerd want ik heb hem gelukkig niet meer in de klas gezien.

Het ging eigenlijk wel goed. Het eerste semester sloot ik af zonder onvoldoendes, alleen maar zevens en achten, dus kreeg ik hoop. Waar ik het vandaan heb gehaald weet ik nu nog niet maar ik ging ieder vrij uurtje zitten leren en het bleef goed gaan.

Nu ben ik bijna klaar met mijn studie en heb nog steeds geen enkele onvoldoende op mijn puntenlijst staan. Ik heb zelfs geen enkel hertentamend hoeven te doen. Maar dat heb ik niet alleen gedaan. Dat realiseer ik mezelf maar al te goed en wil dan ook wat mensen bedanken.

Ten eerste mijn gezin dat altijd vertrouwen in me heeft gehad en me hebben gesteund door dik en dun. Vooral mijn vrouw Thea is als een rots achter me gaan staan en heeft me af en toe door diepe dalen heen gesleurd. Gelukkig kan ik haar dadelijk weer alle aandacht geven die ze verdient en kunnen we samen wat “verloren tijd” in gaan halen. Zonder haar was het me echt niet gelukt.

Verder wil ik dhr. Jos Raemakers bedanken voor zijn speurtocht om een passende studie voor mij te vinden: het is hem gelukt. Ook wil ik mijn medestudenten en vooral Ruud Beck en mijn collega’s, bedanken voor hun eindeloze geduld als ik weer eens door de zenuwen bevangen de oren van hun hoofd af kletste. Ook mijn teamleider Fred Wiegel wil ik hartelijk bedanken voor het grote vertrouwen die hij mij gegeven heeft om van het project “GENESIS” een succes te mogen maken.

Ik wilde eigenlijk geen verschillen maken maar ik wil toch ook graag een aantal medewerkers van de opleiding speciaal bedanken. Mijn persoonlijke “mentor” Bert Buitenhuis heeft mij steeds gemotiveerd en hij was een rustpunt en vraagbaken voor al mijn vragen en problemen. Hij heeft mij vanaf het begin af aan het gevoel geven dat ik het aankon en dat is erg belangrijk voor mij geweest. Michel Grijpink heeft mij prima bijgestaan in mijn afsluitende afstudeeropdracht en heeft geen moeite bespaard om mij met raad en daad bij te staan. Heren bedankt. Natuurlijk wil ik ook alle leraren en leeraressen bedanken voor hun inzet en enthousiasme.

Verder wens ik u veel leesplezier.

Don Salimans

Februari 2007
Inhoudsopgave

1 INLEIDING ... 7

2 DE ORGANISATIE ... 8
 2.1 DE ORGANISATIESTRUCTUUR ... 8
 2.2 HET REKENCENTRUM .. 9
 2.3 DE BEDRIJFSKULTUUR .. 9
 2.4 POSITIE BINNEN DE GEMEENTE OSS .. 10

3 PLAN VAN AANPAK ... 11
 3.1 INLEIDING .. 11
 3.2 OPDRACHT OMSCHRIJVING .. 12
 3.3 AFBKenING .. 13
 3.4 RANDVOORWAARDEN EN SUCCESFACTOREN ... 13
 3.5 SPEERPUNTEN ... 13
 3.6 OP TE LEVEREN PRODUCTEN ... 13
 3.7 UIT TE VOEREN ACTIVITEITEN .. 14
 3.8 KWALITEITSBEWAKING ... 14
 3.9 PROJECTORGANISATIE .. 14
 3.9.1 De opdrachtgever .. 14
 3.9.2 De opdrachtnemer .. 14
 3.10 RELATIE MET ANDERE PROJECTEN ... 14
 3.11 KOSTENRAMING VAN HET PROJECT ... 15
 3.11.1 Kosten die doorberekend worden in het project ... 15
 3.11.2 Kosten die niet doorberekend worden in het project ... 15
 3.12 PLANNING ... 15

4 BESTAANDE SITUATIE .. 17
 4.1 HARDWARE ... 17
 4.2 SOFTWARE ... 18

5 RISICOANALYSE .. 20
 5.1 INLEIDING .. 20
 5.2 DOEL .. 21
 5.3 DE OMGEVINGSFACTOREN ... 21
 5.3.1 Computerzaal ... 21
 5.3.2 Stroomvoorziening ... 22
 5.3.3 Netwerk .. 22
 5.3.4 Klimaatbeheersing .. 23
 5.3.5 Beveiliging (fysiek) .. 23
 5.3.6 Beveiliging (data) .. 23
 5.3.7 Data Opslag (Fysiek) ... 24
 5.4 KOSTENBEHEERSING .. 24
 5.5 REDUNDANTIE ... 24
 5.6 DATA OPSLAG .. 25
 5.7 WORDT ER NU REKENING GEHOUDEN MET WETTELIJKE BEPALINGEN? 25
 5.8 MOET ER REKENING GEHOUDEN WORDEN MET TOEKOMSTIGE PROJECTEN? 25
 5.9 WAT GEBEURT ER MET DE DATA OP DE IN TE LEVEREN SYSTEMEN? 25
6 ANALYSE EN KEUZES DATA STORAGE ... 26
 6.1 EISEN ... 26
 6.2 VERGELIJ KING... 26
 6.3 NAS VERSUS SAN VERSUS iSCSI ... 27
 6.3.1 NAS .. 27
 6.3.2 SAN .. 27
 6.3.3 iSCSI ... 28
 6.4 DE KEUZE .. 30
 6.4.1 Multifunctioneel (E1) ... 30
 6.4.2 Leverancier (E2) .. 30
 6.4.3 Performance (E3) .. 30
 6.4.4 Redundantie (E4) en High availability (E5) ... 31
 6.4.5 Schaalbaarheid (E6) ... 31
 6.4.6 Toekomstgericht (E7) .. 31
 6.4.7 Naadloos koppelen aan de huidige infrastructuur (E8) 31
 6.4.8 Transparant (E9) .. 32
 6.4.9 Moet binnen de eisen van het financiële budget passen (E10) 32
 6.5 CONCLUSIE .. 33

7 HET ONTWERP VAN DE NIEUWE INFRASTRUCTUUR .. 35
 7.1 INLEIDING ... 35
 7.2 ONTWERP NIEUWE OMGEVING .. 37
 7.2.1 Huidige omgeving (Augustus 2006)* .. 37
 7.3 DE KEUZE VAN DE SERVERS EN DE BACKUPOPLOSSING 38
 7.3.1 Inleiding ... 38
 7.3.2 De servers .. 38
 7.3.3 Benchmarks .. 40
 7.3.4 De Tapeilibrary .. 41
 7.3.5 Staging .. 42
 7.3.6 Conclusie .. 44
 7.4 FUNCTIONEEL ONTWERP .. 45
 7.4.1 Clusteromgeving .. 45
 7.4.2 Domein controllers ... 46
 7.5 DETAILONTWERP ... 47
 7.5.1 Benodigde hardware .. 47
 7.5.2 UPS .. 47
 7.5.3 Servers .. 47
 7.5.4 SAN ... 48
 7.5.5 MSL library (Taperobot) .. 50
 7.5.6 Data Protector Backup Software ... 50
 7.5.7 Management door Systems Insight Manager 50
 7.6 TECHNISCH ONTWERP .. 51
 Server configuratie ... 51
 7.6.1 Diskconfiguratie ... 51
 7.6.2 Netwerkredundantie (NIC) .. 52
 7.6.3 Netwerkscalaansluiting beheer .. 52
 7.6.4 IP Adressen Servers .. 52
 7.6.5 Inrichting filesystemen ... 52
 Software .. 53
 7.6.6 Microsoft Exchange Server 2003 ... 53
 7.6.7 Microsoft SQL server ... 53
 7.6.8 UPS agent software .. 53
 7.6.9 Backup software .. 53
 7.6.10 Remote Desktop .. 53
 7.6.11 Diversen ... 53
 7.6.12 Nieuwe omgeving (februari 2007) ... 55

8 DE WERKING VAN EEN CLUSTER IN EEN NOTENDOP 56
 8.1 CLUSTER HARDWARE ... 59
 8.2 CLUSTER SOFTWARE .. 59
 8.2.1 Cluster service account .. 59
 8.2.2 Cluster netwerk instellingen ... 59
 8.2.3 Cluster Quorum ... 60
 8.2.4 Cluster Volumes ... 60
1 Inleiding

Het project heet Genesis “ Een nieuw begin “ en die naam is met zorg gekozen. Dit verdient natuurlijk een uitleg.

Bij de gemeente Oss was het de gewoontes om projecten van deze omvang compleet uit te besteden. Dat had een aantal redenen waaronder onvoldoende specialistische kennis bij de beheerorganisatie.

Het voordeel van deze manier van werken was dat er uiteindelijk wel voldaan werd aan de gegeven opdracht. Het nadeel was dat dit af en toe wel eens jaren in beslag nemen met alle kosten van dien.

Als voorbeeld haal ik hier even het project “ 4711 “ van de gemeente Oss aan.
(Daar zat inderdaad een vreemd luchtje aan).

De opdracht van dit project was dat het toenmalige Windows NT serverpark omgezet moest worden naar een Windows 2000 serverpark en daar werd lopende het project ook nog even Serverbased Computing (Citrix) aan toegevoegd.
Nadat dit project, na bijna 2 jaar, was afgerond werd alles over de zogenaamde “ schutting “ geworpen en moest de beheerorganisatie van de gemeente Oss maar zien wat ze er verder mee deed.
Dezelfde beheerorganisatie was in die 2 jaar absoluut niet betrokken geweest bij de implementatie van het geheel en wist dus niet hoe de structuur nu eigenlijk in elkaar stak. Documentatie was er wel maar niet gestructureerd en was onbruikbaar voor de opdrachtgever.
Nu bijna 5 jaar later is nog steeds niet alles helemaal duidelijk en komen de beheerders dagelijks nog vragtekens tegen.
Ook de leaseconstructie (financieel) verdiende niet de schoonheidsprijs. Er worden iedere maand nog steeds kapitalen betaald, tot en met april 2007, om het geheel te mogen gebruiken.

Dit is natuurlijk een schoolvoorbeeld zoals het niet moet, en dat is duidelijk iets wat de opdrachtgever niet meer wil en wordt het deze keer anders aangepakt... of te wel...

“ EEN NIEUW BEG I N “
2 De organisatie

2.1 De organisatiestructuur

In dit hoofdstuk een organigram van de organisatiestructuur van de gemeente Oss waar ik mijn afstudeeropdracht heb gedaan in de hoedanigheid van technisch systeembeheerder, en waar ik me in deze organisatie bevind.

De afdeling Servicecentrum Automatisering is op dit moment niet meer als staffunctie in het organigram opgenomen. Een aantal jaren geleden was deze afdeling gesitueerd direct onder de gemeentesecretaris. Dat wil niet zeggen dat de beslissingen inzake ICT-vraagstukken genomen worden zonder inbreng van het Servicecentrum Automatisering. Er is een ICT-Platform opgericht waar alle hoofden van dienst zitting hebben inclusief de teamleider van het Servicecentrum Automatisering. Alle aankopen op ICT gebied (groot en klein) behoren via de inkoper van deze afdeling te lopen. Ook zijn er aan de Concernstaf drie personen toegevoegd die het beleid inzake ICT binnen de gemeente Oss moeten toetsen aan vooraf gestelde criteria, dit in nauw overleg met de teamleider van het Servicecentrum Automatisering.
2.2 Het rekencentrum

Het rekencentrum van de gemeente Oss is een onderdeel van de Dienst gemeentebedrijven. Het rekencentrum levert diensten aan ambtenaren, raadsleden maar bovenal aan de burgers van de gemeente Oss (d.m.v. bijvoorbeeld het Digitaalloket). Sinds 2006 is er ook begonnen met het leveren van diensten aan andere gemeenten.

De afdeling bestaat uit 13 vaste werknemers en 1 of 2 stagieres van de Mbo-opleiding ROC de Leygraaf te Oss.

Er is een onderverdeling in deze werknemers op taakgebied:

1e lijn

<table>
<thead>
<tr>
<th>Helpdesk</th>
<th>2 FTE's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkplekbeheer</td>
<td>2 FTE's</td>
</tr>
</tbody>
</table>

2e lijn

<table>
<thead>
<tr>
<th>Technisch Applicatiebeheer*</th>
<th>4 FTE's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netwerkbeheer/telefonie</td>
<td>1 FTE</td>
</tr>
<tr>
<td>Interanet/beveiliging</td>
<td>1 FTE</td>
</tr>
<tr>
<td>Technisch Systeembeheer</td>
<td>1 FTE</td>
</tr>
<tr>
<td>Database Beheer</td>
<td>1 FTE</td>
</tr>
</tbody>
</table>

Leidinggevende

| Teamleider | 1 FTE |

* De Technisch Applicatiebeheerders verzorgen voornamelijk de installatie van software en de updates hiervan. Deze taak is vooral complex omdat de opdrachtgever met een serverbased (Citrix) omgeving werkt. Het beheer van de Citrixfarm valt ook onder de verantwoordelijkheid van deze beheerders.

2.3 De bedrijfscultuur

De gemeente Oss was tot voor enkele jaren een sterk ambtelijke organisatie. In tegenstelling tot het bedrijfsleven waar het gaat om snelle beslissingen hebben we bij het tot stand komen van een beslissing vaak te maken met een democratisch proces wat nu eenmaal een langere weg kent. Klantgerichtheid was lange tijd geen issue. Het verschuilen achter wettelijke bepalingen en procedures was kenmerkend voor de relatie tussen ambtenaren en burgers. Hier is de laatste jaren wel een kentering in gekomen mede door een steeds mondiger wordende burger. Ook binnen de gemeente Oss heeft er een verandering plaatsgevonden.

Op 1 mei 2002 is het organisatieontwikkelingstraject Operatie PrOSSessor afgerond. Deze naam is gekozen omdat het enerzijds om een proces gaat en aan de andere kant een woordspeling omdat Oss erin verwerkt zit. Daarmee is een nieuwe organisatiestructuur voor de gemeente van kracht geworden. Deze bestaat uit drie diensten, te weten Publiekszaken, Stadsbeleid, Gemeentebedrijven en uit de afdelingen Concernstaf, Bestuurszaken en de Brandweer.
De doelstellingen van operatie PrOSSessor waren:
- de organisatie wordt vraaggericht ingericht: de klantvraag is leidend.
- een scheiding tussen beleid en uitvoering.
- een platte organisatie met korte, heldere lijnen naar bestuur, management en medewerkers zodat de organisatie makkelijk en sneller kan inspelen op nieuwe ontwikkelingen/veranderende omstandigheden.

In operatie PrOSSessor is ‘structuur verweven met cultuur’. Zonder een omslag in het denken en het gedrag van de medewerkers binnen de organisatie worden de eerder genoemde doelstellingen niet bereikt. Naar aanleiding van kenmerken van de organisatie en de eerder omschreven doelstellingen is een cultuurprofiel vastgesteld.

Hierbij gaat het om de volgende cultuurelementen:
- geïnteresseerd in de klant
- ondernemend
- opstelling als partner in- en extern
- professionele uitstraling
- denken in oplossingen
- behalen van resultaten

De realisatie van het cultuurprofiel moet zichtbaar worden in houding en gedrag van medewerkers. Dit vereist van leiding en medewerkers een positieve instelling om het cultuurprofiel te vertalen en concreet te maken naar de eigen dienst of afdeling. Organisatieontwikkeling is een continue proces en dat niet is opgehouden op 1 mei 2002. Integendeel, het gaat door, niet alleen op concernniveau maar ook op dienstenniveau en onder verantwoordelijkheid van de dienstdirecteuren.

Ook voor een facilitaire afdeling als de afdeling Automatisering geldt steeds meer dat de (interne) klant centraal staat. De afdeling automatisering kenmerkte zich al door een meer flexibeler werkhouding dan andere ambtelijke afdelingen door de aard van het werk maar door steeds hoger worden eisen van de klanten blijft dit een punt van aandacht.

2.4 Positie binnen de gemeente Oss

Ik ben op dit moment bijna 26 jaar werkzaam bij de Gemeente Oss. Ik ben begonnen als operator en langzaam doorgroei door mijn huidige functie van technisch systeembeheerder. Op dit moment hou ik mij bezig met het algemene beheer van het serverpark binnen de gemeente Oss, heb een voorlichtende taak, zorg voor de algemene inkoop van alle producten die aangeschaft worden in het kader van de ICT en volg hier het aanbestedingsbeleid van de gemeente Oss. Ik neem tevens deel aan projecten en wordt regelmatig ingezet als (deel)projectleider. Verder ben ik veel bezig met onderzoek ten behoeve van verbetertrajecten en doe naar aanleiding daarvan aanbevelingen en start, indien nodig, zelfstandig projecten op.
3 Plan van aanpak

In het plan van aanpak worden de diverse te nemen stappen beschreven en afgebakend. Tevens wordt hierdoor de opdracht helder en vergroot dit de kans om efficiënt en effectief te werk te gaan om dit project met succes af te kunnen ronden. Verder is in dit hoofdstuk een beschrijving van de opdracht te vinden, de randvoorwaarden en succesfactoren voor het behalen van het beoogde resultaat, wat de doelstelling is van deze opdracht, de vereiste op te leveren producten en natuurlijk de planning zelf.

3.1 Inleiding

Door de explosieve groei van externe inkomend dataverkeer (VPN verbindingen, en het in eigen beheer hosten van de gemeentelijke website “Digitaalloket”), worden er steeds meer eisen gesteld aan de beveiliging van het gemeentelijke netwerk. Dit houdt in dat het serverpark daardoor ook flink gegroeid is de laatste jaren (DMZ).

In 2001 zijn de toenmalige Windows NT servers vervangen door standalone Windows 2000 servers en is de opdrachtgever overgegaan van het gebruik van zogenoemde FAT-clients naar Thin-Clients (Citrix) op de werkplekken.

Per 1 april 2007 loopt het leasecontract van een groot aantal hardwarecomponenten af. Er moet nagedacht worden over een nieuwe serverinfrastructuur. Deze nieuwe omgeving moet gefaseerd ingevoerd worden en voor 1 april 2007 operationeel zijn.

De reden dat deze servers voor 1 april 2007 vervangen moeten zijn, ligt aan het feit dat de leasecontracten van deze hardware per 1 april 2007 aflopen. Een tweede reden hiervoor is dat de componenten aan vervanging toe zijn (veel storingen) en komt de continuïteit van de bedrijfsvoering hierdoor regelmatig in de gevarenzone.

Deze servers zijn de voor de bedrijfsvoering kritische servers in de gemeentelijke infrastructuur. We praten hier over fileservers, Exchange, SQL, domain Controllers, applicatie servers, backupserver.

Al deze servers moeten vervangen worden en voorzien worden van Windows 2003. De data moet gemigreerd worden zonder dat de gebruikers daar last van hebben. Waarbij gedurende het gehele project de bedrijfsvoering doorgang zal moeten vinden. De redundantie laat op dit moment te wensen over (alleen maar standalone systemen b.v.) en moet drastisch verbeterd worden. Wat ook een probleem is en steeds groter wordt is de dataopslag. Er wordt steeds meer gedigitaliseerd en is er steeds meer behoefte aan opslagcapaciteit en een vernieuwde manier om al deze data binnen een beperkt backupwindow te kunnen veiligstellen. Er moet hierbij rekening gehouden worden met de wettelijke bepalingen waar een gemeente zich aan moet houden. Vooral dit laatste punt zal in de nabije toekomst alleen maar toenemen.
3.2 Opdracht omschrijving

“Creëer voor 1 april 2007 een zo efficiënt en effectief mogelijke nieuwe serverinfrastructuur. Waarbij redundantie, kostenbeheersing, dataopslag, continuïteit en compatibiliteit in al zijn facetten is opgenomen.”
3.3 Afbakening

Alleen de volgende servers, te weten de fileservers, Exchangeserver, SQLserver, domain controllers, applicatieservers en backupserver worden in deze opdracht meegenomen.

Aanpassingen aan het Cisco netwerk en netspanning vallen buiten de scope van deze opdracht. Betreffende het financiële gedeelte, deze moet binnen de Europese aanbestedingsgrens blijven.

3.4 Randvoorwaarden en Succesfactoren

Het project beperkt zich niet alleen tot de hardware. Er moeten ook oplossingen opgenomen worden op het gebied van software en storage.

Om het afstudeerproject te laten slagen is het van belang dat er wordt voldaan aan de volgende voorwaarden:

- Met betrekking tot virtualisatie moet het project zich beperken tot het opnemen, en rekening houden met eventuele virtualisatie projecten.
- De beschikking over voldoende financiële middelen
- Er rekening gehouden wordt met wettelijke bepalingen waaronder audits.
- Gebruik gemaakt kan worden van interne en/of externe expertise.
- Het project voor 1 april 2007 afgerond is.
- Software (OS en Backup) vendor moet ongewijzigd blijven.
- De totale kosten van het project moeten binnen de gestelde grenzen blijven.
- Redundantie.
- Kostenbeheersing
- Dataopslag
- Continuïteit
- Compatibiliteit
- Een goed functioneel-, technisch en detailontwerp.

3.5 Speerpunten

De speerpunten voor het nieuwe netwerk zijn:

- Schaalbaarheid (behoeft aan ruimte moet flexibel ingevuld kunnen worden voor de komende jaren, wat vooral voor digitalisering noodzakelijk is)
- Performance (toename van digitalisering stelt ook specifieke eisen aan de nieuwe infrastructuur)
- Beschikbaarheid (de afhankelijkheid van de infrastructuur wordt steeds groter)
- Bewezen technologie.

3.6 Op te leveren producten

Het uiteindelijke op te leveren product is een efficiënt en effectief werkend serverpark zoals deze gespecificeerd is binnen de kaders van deze opdracht. Dit inclusief de relevante documentatie.
3.7 Uit te voeren activiteiten

De afstudeerperiode is in verschillende fases te verdelen:

- Inventarisatie
- Analyse
- Ontwerpen
- Aanbesteden
- Implementeren & Testen
- Evalueren

3.8 Kwaliteitsbewaking

Om de kwaliteit van het op te leveren uiteindelijke resultaat te bewaken en te waarborgen zal er op regelmatige basis een terugkoppeling moeten plaats vinden met de direct leidinggevende en de gebruikers (applicatiebeheerders). Het project wordt gefaseerd uitgevoerd en zullen er op diverse punten in de voortgang van het project stop en go momenten ingebed worden alvorens verder te gaan met een volgende stap in het project. Er zal ook gekozen worden voor standaard methoden en technieken.

3.9 Projectorganisatie

3.9.1 De opdrachtgever

De opdrachtgever is de gemeente Oss, in de persoon van Dhr. F. Wiegel teamleider en direct leidinggevende van de afdeling Service Centrum en Automatisering.

3.9.2 De opdrachtnemer

De opdracht wordt uitgevoerd door Don Salimans.

3.10 Relatie met andere projecten

Tijdens dit project moet rekening gehouden worden met een tweetal projecten die nu al bekend zijn, lopende het project zal flexibel omgegaan moeten worden met nieuwe nog te creëren projecten.

- **Virtualisatie.**
 Vanaf begin 2007 zal dit project worden uitgevoerd. Er zal bij het ontwerp en de aanschaf van hardware vanuit het project " GENESIS " , vanaf het begin rekening gehouden moeten worden met de mogelijkheid tot implementatie van virtualisatie, zodat dit project naadloze aansluiting kan vinden binnen de nieuw te creëren infrastructuur.

- **DMS (Data Management System)**
 Dit project loopt al vanaf maart 2006 en wordt op 29 januari 2007 in productie genomen. Met dit project maakt de digitalisering van documenten zijn intrede. Alle inkomende post, waaronder facturen, worden voortaan digitaal aangeboden aan de medewerkers. Het project Genesis heeft hier op twee fronten raakvlakken mee, namelijk de koppeling van het financieel systeem (CODA) t.b.v. de verwerking van de digitale facturen en ten tweede de opslag van al deze digitale documenten.
3.11 Kostenraming van het project

De kosten die gemaakt moeten worden tijdens het project bestaan uit:

3.11.1 Kosten die doorberekend worden in het project

- Aanschaf servers*
- Aanschaf hardware t.b.v. backup* (Tape)
- Aanschaf hardware t.b.v. data-opslag* (Disk)
- Software waaronder het OS.
- Overwerk (werken die buiten de standaard dienstbetrekking vallen)

* De totale kosten moeten onder het drempelbedrag liggen van de Europese richtlijn EG 2004-18-EC overheidsopdrachten voor werken, leveringen en diensten van 211.000,00 euro. Zoals gesteld is dit één van de randvoorwaarden van dit project.

3.11.2 Kosten die niet doorberekend worden in het project

- Aanpassingen rekencentrum (outlets, spanning e.d.)
- Noodstroomvoorzieningen (UPS)
- Uren die binnen de standaard dienstbetrekking vallen.

Voor deze kosten zijn andere budgetten beschikbaar.

3.12 Planning

Het project heeft een doorlooptijd van 21 augustus tot en met 23 februari 2007. Dan zal een werkend product met de benodigde documentatie worden opgeleverd.

De planning voor deze periode is:

<table>
<thead>
<tr>
<th>Inventarisatie & Analyse (Risico)</th>
<th>21 augustus tot 01 september</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontwerpen</td>
<td>11 september tot 13 oktober</td>
</tr>
<tr>
<td>Aanbesteden & gunning</td>
<td>16 oktober tot 20 oktober</td>
</tr>
<tr>
<td>Levertijd</td>
<td>20 oktober tot 10 november</td>
</tr>
<tr>
<td>Aanpassingen rekencentrum</td>
<td>16 oktober tot 10 november</td>
</tr>
<tr>
<td>Aanpassing noodstroom</td>
<td>16 oktober tot 10 november</td>
</tr>
<tr>
<td>Implementeren & testen</td>
<td>13 november tot 16 februari</td>
</tr>
<tr>
<td>Rapporteren & evalueren</td>
<td>21 augustus tot 23 februari</td>
</tr>
</tbody>
</table>

Pagina 15 van 90
INVENTARISATIE
FASE
4 Bestaande situatie

Inventarisatie

Eerst moet er een inventarisatie plaats vinden van de componenten die per 1 april 2007 door de leasemaatschappij ingevorderd gaan worden. Met betrekking tot de software wordt er een overzicht gemaakt om na het onderwerp te kunnen beoordelen welke software (licenties) herbruikbaar is.

4.1 Hardware

De inventarisatie van de te vervangen hardware is de eerste stap die gezet moet worden. De inventarisatie wordt in dit gedeelte beperkt tot de te vervangen servers, software en de opslagapparatuur.

Een overzicht van de gehele inventarisatie vindt u in bijlage A. Hieronder vind u de conclusie van deze inventarisatie.

In de volgende tabel wordt een samenvatting gegeven van de hardware inventarisatie om zo een totaal overzicht te krijgen van o.a. de minimaal benodigde componenten en de minimale dataopslag voor de nieuwe infrastructuur.

<table>
<thead>
<tr>
<th>Server</th>
<th>Netwerk aansluitingen</th>
<th>Aantal processoren</th>
<th>Gebruikte data op C-partitie</th>
<th>Gebruikte data op D-partitie</th>
<th>Gebruikte data op E-partitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maan1</td>
<td>2</td>
<td>2</td>
<td>4,0</td>
<td>89,0</td>
<td></td>
</tr>
<tr>
<td>Maan2</td>
<td>2</td>
<td>2</td>
<td>4,5</td>
<td>84,0</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>2</td>
<td>2</td>
<td>5,0</td>
<td>350,0</td>
<td></td>
</tr>
<tr>
<td>Mercuuris</td>
<td>2</td>
<td>1</td>
<td>4,5</td>
<td>54,0</td>
<td></td>
</tr>
<tr>
<td>Saturnus</td>
<td>2</td>
<td>2</td>
<td>4,0</td>
<td>33,0</td>
<td></td>
</tr>
<tr>
<td>Zon1</td>
<td>2</td>
<td>1</td>
<td>4,5</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>Zon2</td>
<td>2</td>
<td>1</td>
<td>4,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>2</td>
<td>2</td>
<td>8,0</td>
<td>60,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Netapps dataopslag</td>
<td>1</td>
<td>1</td>
<td>410,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taperobot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal aantal NIC's</td>
<td>18</td>
<td></td>
<td>Totaal GB 448.5</td>
<td>675.0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Diskcapaciteit

De bovenstaande tabel geeft b.v. een indicatie van de minimaal te reserveren schijfruimte, zodat hier rekening mee kan houden bij de aanschaf van de nieuwe hardware. Dit is met nadruk maar een indicatie want er zal rekening gehouden moeten worden met de grote vlucht van digitalisering die een grote aanslag zal gaan plegen op de gehele diskcapaciteit.

Door dat de hoeveelheid van data zal toenemen zal er tevens gekeken moeten worden naar een andere manier van backuperen. In de huidige omgeving wordt het beschikbare backupwindow reeds overschreden en de te backuperen data wordt alleen maar meer. Gedacht kan worden aan het staging principe waar de data eerst naar disk en daarna pas naar tape geschreven wordt. Als dit principe gekozen wordt zal er additionele diskruimte benodigd zijn.
Netwerk

Het aantal minimaal te reserveren outlets is af te lezen uit de bovenstaande tabel, echter door de nieuwe technieken, en zeker niet te vergeten de overgangsfase (dubbele aansluitingen van oud en nieuw), zullen er extra outlets benodigd zijn. Deze informatie zal meegenomen moeten worden in het technisch ontwerp.

Noodstroomvoorziening

Ook de noodstroomvoorzieningen, in de vorm van rackmounted UPSen, zullen aangeschaft moeten worden omdat deze hardware geleased is tot en met april 2007.

4.2 Software

De onderstaande inventarisatie geeft een overzicht van de software die in gebruik is op de te vervangen hardware. Vooral de licenties van de backupsoftware is interessant omdat deze hergebruikt kunnen worden in een nieuwe situatie (zogenaamde verhuislicenties).

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Omschrijving</th>
<th>Verklaring</th>
<th>Aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatingsystem</td>
<td>Microsoft Windows 2000</td>
<td>Server Standard edition</td>
<td>8</td>
</tr>
<tr>
<td>Mail</td>
<td>Microsoft Exchange 2000</td>
<td>Server Standard edition</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Microsoft Exchange 2003</td>
<td>Enterprise edition</td>
<td>1</td>
</tr>
<tr>
<td>DataBase</td>
<td>Microsoft SQL</td>
<td>Server single processor edition versie 2000</td>
<td>2</td>
</tr>
<tr>
<td>Backupsoftware</td>
<td>HP Data Protector Cellmanager</td>
<td>Versie 5.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tapedrive licenties</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Speciale Agents</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Staging licenties 1 Terabyte</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Microsoft Cal</td>
<td>Microsoft Exchange 2003</td>
<td>Software assurance</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Microsoft 2003 Terminal</td>
<td>Software assurance</td>
<td>700</td>
</tr>
</tbody>
</table>
ANALYSE
FASE
5 Risicoanalyse

5.1 Inleiding

“METEN IS WETEN“

Dit is een bekende kreet, maar wat houdt dit nu concreet in. Voordat men een project start zal men eerst informatie moeten verzamelen wat wil een opdrachtgever, wat zijn de beschikbare middelen. Wat zeker niet vergeten mag worden is de vraag: “Wat voor risico’s kan men onderkennen?“. Men zal dit moeten weten om in het project stop (no-go) en go momenten in te kunnen bouwen en juiste inschattingen te kunnen maken (financieel en technisch). Die risico’s kunnen vele gezichten hebben, zelfs letterlijk, want veel risico’s kan men proberen af te dekken, er is echter één risico waar dat heel erg moeilijk bij is namelijk de menselijke factor. Vooral bij ICT projecten is het van belang om hier ernstig rekening mee te houden.

Eén van Murphy’s laws is daar een goed voorbeeld van:

“Things will go wrong in any given situation, if you give them a chance and if there's more than one way to do a job, and one of those ways will result in disaster, then somebody will do it that way.”

Mensen die werkzaam zijn binnen de ICT wereld zullen deze stelling kunnen beamen.

Het project zal zich niet alleen beperken tot de aan te schaffen nieuwe hard- en software, maar zal ook zeker de omgevingsfactoren mee nemen omdat die zeker zo belangrijk zijn.
5.2 Doel

Het uiteindelijke doel van deze risicoanalyse zal zich vertalen in een gedegen detail-, technisch- en functioneel ontwerp van de nieuw te bouwen infrastructuur die voldoet aan de eisen die zijn gesteld binnen de kaders van deze opdracht.

Welke risicofactoren spelen een rol?

- Is er nu voldoende redundantie ingebouwd?
- Wordt er op dit moment een grote mate van continuïteit gewaarborgd?
- Kostenbeheersing?
- Is de dataopslag toereikend?
- Zou een nieuwe infrastructuur naadloos aan kunnen sluiten op de huidige infrastructuur?
- Wordt er nu rekening gehouden met de wettelijke bepalingen waaraan de opdrachtgever zich moet houden?
- Uitwijk?
- Wat gebeurt er met de (gevoelige) data op de te vervangen servers?

5.3 De omgevingsfactoren

Welke omgevingsfactoren kunnen we in deze opdracht onderscheiden.

Binnen de scope van deze opdracht vallen:

- Computerzaal
- Stroomvoorziening
- Netwerk

Buiten de scope van deze opdracht vallen:

- Klimaatbeheersing
- Beveiliging (data + fysiek)
- Data opslag (fysiek)

Deze laatste twee omgevingsfactoren worden vermeld om het verhaal compleet te maken. Dat wil niet zeggen dat ze niet belangrijk zijn.

5.3.1 Computerzaal

Het gehele rekencentrum is 2 jaar geleden verbouwd en de computerzaal biedt derhalve voldoende m² vloeroppervlakte om de nieuwe infrastructuur te kunnen plaatsen naast de reeds bestaande hardware en de te vervangen hardware.

De fysieke beveiliging is up-to-date incl. een mensvriendelijke gasblusinstallatie, beveiligings-sensoren boven het plafond en onder de verhoogde computervloer, ruimte en toegangsbeveiliging enz.

Onder de gehele verhoogde computervloer is zelfs een web van koperdraad (1 cm in doorsnede) aangebracht die fungeert als antistatische mat (vergelijkbaar met de kooi van Faraday om EMI tegen te gaan)

Hier zijn geen extra risico's te verwachten omdat de risico's al mee genomen zijn in het verbouwingsproject van 2 jaar geleden. Deze voldoen aan de eisen van de opdrachtgever en de wettelijke bepalingen.
5.3.2 Stroomvoorziening

De stroomvoorziening van de computerzaal is 2 jaar geleden in zijn geheel gerenoveerd. “Gewone” 220v aansluitingen zijn onder de computervloer voldoende aanwezig, netjes verdeeld over 56 groepen van 16 amp. De opdrachtgever heeft de beschikking over een dieselnoodaggregaat die een groot aantal vooraf gedefinieerde groepen in het gemeente huis zal voorzien van stroom bij een algehele stroomuitval. Die overname gaat erg snel maar niet snel genoeg om geen “dip” in de stroomvoorziening van b.v. de computerapparatuur te veroorzaken. Als hier geen maatregelen voor worden getroffen zal deze apparatuur uitvallen. Zoals uit het hiervoor gaande blijkt is het gebruik van UPSen geen overbodige luxe. Deze “luxe” is reeds aanwezig en de beschikbare UPSen zijn van het model 19” (4 KVA), zijn per 2 stuks in een 19” rack geschroefd om de hardware in dat rack van stroom te voorzien bij calamiteiten zoals hiervoor aangegeven.

De UPSen zijn geleased dus die worden op 1 april 2007 opgehaald door de leasemaatschappij. Er zal gekeken moeten worden naar de aanschaf van nieuwe UPSen om alle nieuwe hardware te kunnen voorzien van tijdelijke noodstroom. Bij de aanschaf van deze UPSen moet er rekening mee gehouden worden dat deze UPSen voorzien moeten zijn, of uitgebreid moeten kunnen worden, met een netwerkkaart (NIC) om monitoring mogelijk te maken. De kosten van de UPSen vallen niet onder dit project maar vallen onder de bouwkundige voorzieningen.

5.3.3 Netwerk

Het is belangrijk om reeds in een vroeg stadium, de hoeveelheid benodigde netwerkaansluitingen inzichtelijk te maken. Deze zijn nodig om tot een succesvol einde van dit project te komen. Samen met de netwerkbeheerders zal er gekeken worden of er na de inventarisatie van de benodigde outlets voldoende outlets beschikbaar zijn om de extra hardware aan te kunnen sluiten. Vooral omdat men in de overgangssituatie rekening moet houden met dubbele hardware. Niet alleen het aantal outlets zijn van belang maar minstens zo belangrijk zijn de vrije aansluitingen (1 Gb) op de Core-builders (Cisco 6500). Deze zullen geïnventariseerd en eventueel uitgebreid moeten worden. De eventuele kosten hiervan vallen niet onder dit project.

De te vervangen servers zijn op dit moment voorzien van 2 netwerkkaarten elk met een maximale snelheid van 1 Gb. Deze zijn afzonderlijk gekoppeld aan één poort van één van de Corebuilders (dit om de redundantie van de netwerkaansluitingen te kunnen realiseren)

Om de netwerksnelheid te verhogen zou er gekozen kunnen worden voor het teamen van de netwerkkaarten zodat de snelheid gecombineerd wordt naar maximaal 2 Gb en de redundantie gewaarborgd blijft. Valt er 1 NIC uit gaat al het verkeer gewoon door op de resterende NIC.

Er moet rekening mee gehouden worden dat wanneer gekozen wordt voor de standaard HP servers (DL360 en DL380) de zogenaamde ILO (management) poorten aangesloten moeten worden wat per server 1 netwerkaansluiting extra kost (100 Mb is voldoende).

De netwerkcomponenten (routers, Core-Builders enz.) zijn begin dit jaar bijna in zijn geheel vervangen dus behoeven daar geen, buiten het hierboven genoemde, aanpassingen plaats te vinden. Dit laatste valt ook buiten de scope van deze opdracht.
5.3.4 Klimaatbeheersing

Met betrekking tot de klimaatbeheersing het volgende.
Sinds de verbouwing van twee jaar geleden staan er twee grote onafhankelijke airco’s te draaien die
afzonderlijk van elkaar de temperatuur en vochtigheid op een gelijkmatig niveau kunnen houden. En
er is twee jaar geleden al rekening gehouden met dit project dus de klimaatbeheersing behoeft geen
aanpassing. Er zal alleen maar gebruik gemaakt worden van deze overcapaciteit bij de migratie van
oud naar nieuw (dubbele servers). Na de afronding van het project zal de overgebleven hardware
zelfs minder capaciteit vragen als voor het project.

5.3.5 Beveiliging (fysiek)

Het rekencentrum wordt beveiligd d.m.v. infrarood, water, rook, warmte en contactdetectors tevens is
dit gedeelte van het gemeente huis als aparte beveiligingsgroep aangesloten bij de meldkamer. Er zijn
in de beheerderruimte genoeg brandblusapparaten aanwezig en de computerruimte is ook nog
beveiligd met een speciale gasblusinstallatie (FM200 chemischgas) die binnen enkele seconden het
zuurstofgehalte in de computerruimte op een dusdanig laag peil brengt dat de eventueel aanwezige
vlammen spontaan doven dit door een gebrek aan zuurstof. Deze procedure maakt gebruik van
molecuul vergroting. Dit gas is zover nu bekend niet gevaarlijk voor mensen in tegenstelling tot het bij
de opdrachtgever hiervoor gebruikte kooldioxide gas.

De toegangsdeur naar en van het rekencentrum is beveiligd met camera’s. Bezoekers moeten zich
eerst melden alvorens toegang te krijgen tot de beheerderruimte.

De toegangsdeur naar de computerruimte is beveiligd met een cijferslot.

De beveiliging van het gehele rekencentrum is op een erg hoog niveau en behoeft geen
aanpassingen.

5.3.6 Beveiliging (data)

De beveiliging bij de opdrachtgever wordt gewaarborgd door een specialist. Alle data toegangen
(waaronder VPN) lopen via een DMZ. Deze specialiteit valt buiten de scope van deze opdracht.
De beveiliging/opslag van data wordt verzorgd door HP Data Protector Software in samenwerking met
eén taperobot. Deze robot wordt vervangen en er zal gekeken moeten worden naar meer
redundantie.
Het backupwindow is met de hiervoor genoemde oplossing, niet meer haalbaar.
5.3.7 Data Opslag (Fysiek)

In de computerruimte staan twee grote brandwerende datakluizen. Hier wordt o.a. de originele media op geborgen van bijvoorbeeld aangekochte software. Eventuele images, contracten enz. worden in deze kluizen bewaard.

Onder invloed van bijvoorbeeld de wettelijke audits worden iedere werkdag de backuptapes, van de vorige nacht, uit het gebouw getransporteerd naar een locatie die 500 meter van het gemeentehuis verwijderd is. Hier staat maximaal 1 set van 5 koffers (iedere weekdag heeft zijn eigen koffer) van de 4 sets (4 weken). De andere 3 sets koffers staan op een locatie 12 kilometer verwijderd van het gemeentehuis. Dit om bij calamiteiten de beschikking te hebben over de opgeslagen informatie in de vorm van backuptapes.

5.4 Kostenbeheersing

Voordat een definitief besluit genomen kan worden zal er eerst een totaal kostenplaatje op tafel moeten komen. Eén van de eisen van de opdrachtgever is dat er geen tijd verloren mag gaan door een Europese aanbestedingsprocedure of te wel het totale budget is vastgesteld op maximaal 210.000,00 euro. Dit is een "stop or go moment".

Uit budgettaire overwegingen zou er overwogen kunnen worden om gebruik te maken van componenten die reeds in de huidige infrastructuur zijn opgenomen en niet vervangen behoeven te worden. Er zal dan voor gewaakt moeten worden dat de op te leveren kwaliteit gehandhaafd blijft.

5.5 Redundantie

Het huidige server park bestaat uit servers die wat betreft redundantie en continuïteit wel uitgevoerd zijn met RAID sets, dubbele netwerkkaarten, dubbele voedingen, noodstroomvoorzieningen en eventueel dubbele cpu’s maar het blijven Single Points of Failures.

Als een huidige server om wat voor reden “de geest” geeft, dan is het echt afgelopen met de functionaliteiten die via die server aangeboden worden. De server zal eerst gerepareerd moeten worden alvorens er een disaster recovery kan plaats vinden. Dit kost te veel tijd.

De kans van dataverlies moet meegenomen worden in het voorstel. De huidige servers schrijven hun data weg op interne RAIDsets. Dit is in principe een prima oplossing maar de technische technologie die het mogelijk maakt om op die manier te kunnen werken (de SCSI aansturing) is niet redundant uitgevoerd. Gaat hier iets mis loop men de kans alle data op de RAIDset kwijt te raken.

Vooral als er gekeken wordt naar de wettelijke voorgeschreven bepalingen, die er bijvoorbeeld voor de bevolkingsadministratie gelden, dan moeten deze functionaliteiten binnen 2 x 24 uur hersteld zijn. Op dit moment heeft de opdrachtgever wel een uitwijkcontract met het Getronics uitwijkcentrum te Lelystad maar dat is eigenlijk alleen maar bedoeld voor de grote calamiteiten.

Waar tevens rekening mee gehouden moet worden is dat er een juiste verdeling gemaakt moet worden met betrekking tot de aansluiting op de UPSen. Er zullen aparte fases moeten komen en die fases moeten weer ondervoordeeld moeten worden in aparte groepen om zo het risico te verdelen en de UPSen op een juiste manier te belasten.
5.6 Data opslag

De opdrachtgever ontkomt niet aan digitalisering. Alle facturen zullen bijvoorbeeld in de toekomst gedigitaliseerd worden aangeboden (project loopt op dit moment) evenals bijvoorbeeld bouwtekeningen en dergelijke. Dit gaat ongelofelijk veel opslagcapaciteit vragen en de data moet beschikbaar blijven. Als we b.v. een bouwtekening als voorbeeld nemen, die zullen binnen afzienbare tijd via het digitale loket beschikbaar gesteld gaan worden aan makelaars en het grote publiek. Er moet dus rekening gehouden worden met een sterke groei naar de vraag aan diskcapaciteit (toekomst). Ook zal er een nieuw c.q. aangepast backupmechanisme moeten komen die deze data kan beveiligen op removable media, zoals tapes (data moet iedere dag uit het gebouw getransporteerd worden, dit is een wettelijke verplichting).

Bij het ontwerpen van het backupmechanisme moet rekening gehouden worden met het door de opdrachtgever vastgestelde maximale backupwindow, en moet er rekening gehouden worden met de reeds aanwezige (dure) licenties van het huidige pakket Data Protector van HP om zo de kosten te drukken (hergebruik).

De fysieke opslag is reeds behandeld.

5.7 Wordt er nu rekening gehouden met wettelijke bepalingen?

Er wordt op dit moment rekening gehouden met wettelijke bepalingen, aangaande de data opslag. Alleen wordt het handhaven hiervan steeds moeilijker. Door een andere manier van backupen te introduceren moet dit verbeterd worden.

Er wordt tevens rekening gehouden met wettelijke bepalingen (audits) met betrekking tot de beschikbaarheid. Er is een uitwijkcontract af gesloten met het Getronics Uitwijkcentrum te Lelystad (voorheen CUC) die faciliteiten biedt bij een eventuele calamiteit.

5.8 Moet er rekening gehouden worden met toekomstige projecten?

De opdracht van de opdrachtgever geeft aan dat er bij het ontwerp van de nieuwe infrastructuur rekening gehouden moet worden met toekomstige ontwikkelingen waaronder uitwijk.

5.9 Wat gebeurt er met de data op de in te leveren systemen?

Wat vaak vergeten wordt, en dan regelmatig de krant en tv haalt, is de data op disken in de af te voeren servers.

Normaal gesproken worden bij de opdrachtgever alle harddisken, tapes, diskettes enz. in een speciaal hiervoor gehuurde container geplaatst en vernietigd (tot kleine stukjes).

In dit geval is dat erg kostbaar omdat er dan geen enkele server naar de leasemaatschappij af gevoerd kan worden die nog een harddisk bevat en zal de opdrachtgever iedere disk apart moeten gaan betalen.

Een andere mogelijkheid om data te vernietigen is speciaal ontworpen software.
6 Analyse en keuzes data storage

Voordat men aan een nieuw ontwerp kan beginnen zal er eerst een analyse en een keuze gemaakt moeten worden op het gebied van data storage. Naar aanleiding van de gemaakte keuze kan er daarna een nieuw ontwerp gemaakt worden.

6.1 Eisen

Samen met de opdrachtgever is een lijst samen gesteld met de minimale eisen waar de te kiezen storage-oplossing aan moet voldoen:

- Naadloos te koppelen zijn met huidige SAN omgeving.
- Transparant zijn. (vervolg op punt 1 maar dan beheersmatig).
- Hoge mate van redundantie (betrouwbaar).
- Hoge mate van en high availability (beschikbaarheid).
- Schaalbaar zijn.
- Toekomstgericht (b.v. door uitbreidingen, uitwijk enz.).
- Multifunctioneel inzetbaar zijn (UNIX, Windows, VMWARE ESX enz.).
- De performance moet hoog zijn (referentiepunt is de huidige SAN-omgeving).
- De leverancier moet Hewlett Packard zijn (reden volgt verder op in deze paragraaf).
- Moet binnen de eisen van het financiële budget passen (zie aanbesteding).

6.2 Vergelijking

Een aantal jaren geleden werd er, in diverse artikelen, veel gedebatteerd over respectievelijk NAS (Network-Attached Storage) en SAN (Storage Area Networks).

Een SAN werd gezien als een moeilijke en ingewikkelde technologie die maar moeilijk te beheren was. Een NAS werd bestempeld als langzaam en niet schaalbaar (werkt alleen met shares, een SAN daarin tegen is een echt block-device). UNIX heeft een blockdevice nodig en kan dus geen gebruik maken van de goedkopere NAS techniek. In de loop van de jaren kregen allebei de technieken hun eigen plaats binnen computerland.

In de huidige omgeving gebruikt men de zogenaamde DAS (Direct Attached Storage) techniek.

![Diagram](image)

Bij deze techniek worden de disken direct gekoppeld aan één server. Daardoor heeft deze server het alleen recht op de opslagcapaciteit van die disken.
6.3 NAS versus SAN versus iSCSI

6.3.1 NAS

Technisch gesproken is een network-attached storage apparaat in werkelijkheid niet echt een “Storage Attached to a network” apparaat. De SCSI block I/O karakteristiek van een opslag apparaat blijkt zich tussen de NAS processor en zijn “attached storage arrays” te bevinden, en niet tussen de storage disks en het gebruikersnetwerk. Het netwerk-attached gedeelte van een NAS device is daarom eigenlijk niets anders dan network-attached fileserving.

Even een voorbeeld: Wanneer een NAS processor een verzoek ontvangt voor een file, dan moet de processor het filesysteem raadplegen om de metadata van die file te vinden. Hij moet de data blokken identificeren die bij de gevraagde file horen. Daarna moet hij de gevonden data blokken in de juiste volgorde zetten (sequence), en ze in moeten pakken in TCP/IP formaat om ze te kunnen transporteren over het netwerk. Dit tijdrovende werkje gebeurt in de achtergrond en niet op het netwerk zelf.

Het verschil tussen een NAS en een gewone fileserver zit hem in het feit dat het operating system is gestripd van alle niet gebruikte functionaliteiten (ballast) en geoptimaliseerd is voor het verzenden en ontvangen van files via IP protocollen zoals NFS (Network File System) of CIFS (Common Internet File System). Het OS kan een gestroomlijnde versie van UNIX zijn maar ook de gestroomlijnde speciale versie van Windows (Windows Storage Server). In allebei de gevallen serveert de NAS processor files aan clients als zijnde een traditionele fileserver.

6.3.2 SAN

In tegenstelling tot NAS, of het nu om Fibre-Channel of iSCSI gaat, plaatst block I/O direct in een netwerk infrastructuur. Block data transport over een SAN, geeft een groot performance voordeel. Dat blijkt wel uit het feit dat bijvoorbeeld Network Appliance deze techniek gebruikt voor mass storage. Gigabit transport van data blocks over een SAN bevordert de doorvoersnelheid (throughput) en geeft de NAS processor, van de Network Appliance, de gelegenheid de aangeleverde raw-data te verwerken. De performance van een NAS wordt in dit geval sterk verbeterd door SAN technologie.
Dit voorbeeld geeft al aan dat een SAN een veel grote doorvoersnelheid heeft als een NAS. Verder op in dit hoofdstuk meer voordelen van een SAN.

6.3.3 iSCSI

Net zoals Fiber Channel is iSCSI een block storage protocol. Waar Fiber Channel SCSI commando’s, status en data inpakt (encapculates) in Fiber Channel Frames (zie figuur), gebruikt iSCSI dezelfde werkwijze maar dan in TCP/IP formaat.

In een zuivere iSCSI omgeving, hebben zowel de hosts als de storage targets een Ethernet of Gigabit Ethernet interface en gedraagt het IP-netwerk zich als een SAN infrastructuur. Door deze manier van werken wordt er een maximale doorvoersnel van maximaal 1 Gb gehaald een SAN daarin tegen kan tegenwoordig doorvoersnelheden bereiken van 4 Gb, er zijn dan wel speciale Fiber-Channel HBA’s in de clients (targets) nodig om dit te kunnen realiseren.
iSCSI is eigenlijk niets anders dan een “Converter” in samenwerking met een diskkabinet. Meestal wordt hiervoor een NAS gebruikt maar er zou zelfs een SAN gebruikt kunnen worden. Dit laatste zou alleen als voordeel hebben dat er bezuinigd wordt op de duurdere HBA-fiber kaarten die normaal nodig zijn voor de koppeling met een SAN. Er wordt dan wel een aanslag gepleegd op de performance (Zie vergelijking SCSI-FCP versus iSCSI) en dat is nu juist één van de sterke punten van een SAN.
6.4 De keuze

Omdat iSCSI, net zoals NAS, gebruik maakt van TCP/IP als het transport protocol en Ethernet voor de LAN infrastructuur, lijkt het dat NAS en iSCSI gewoon twee verschillende manieren zijn om eenzelfde taak uit te voeren.

De werkelijkheid ligt echter anders. NAS en iSCSI voeren hun taken elk op een voor hen unieke wijze uit. De beslissing om gebruik van een NAS, iSCSI of SAN oplossing ligt in zijn geheel aan de te gebruiken toepassing en de eisen die applicaties hieraan stellen.

In de hierna volgende vergelijking wordt er van uit gegaan dat het iSCSI-protocol gecombineerd wordt met een NAS. Dit omdat iSCSI in combinatie met een SAN niet wenselijk is en geen meerwaarde oplevert voor de opdrachtgever.

6.4.1 Multifunctioneel (E1)

Sommige applicaties, zoals database systemen zoals Oracle, MSSQL en Microsoft Exchange verwachten directe toegang tot storage op block-niveau zoals een SAN en iSCSI apparaten die leveren. Een NAS is op dat moment al uit beeld verdwenen.

Een SQL-platform bijvoorbeeld, schrijft en leest databaserecords direct van de disk en maakt daarvoor gebruik van het SCSI-protocol, en maakt daarvoor exclusief gebruik van DAS, Fibre Channel (SAN) of iSCSI storage.

Andere applicaties maken eenvoudig verbinding met files door volume managers en kunnen dus gebruik maken van files die aangeleverd worden door een NAS processor door middel van b.v. shares. High performance applicaties zoals streaming high definition video worden beter ondersteund door een block-device zoals een Fibre Channel SAN, al is de performance van zowel NAS als iSCSI verbeterd door de nieuwe generatie netwerk adapter interfaces.

6.4.2 Leverancier (E2)

De leverancier van de gehele serverinfrastructuur, bij de opdrachtgever, is van Hewlett Packard. De opdrachtgever heeft aangegeven dat de aan te schaffen hardware van deze leverancier af moet komen dit heeft namelijk een aantal voordelen waaronder o.a.:

- Onderhoud bij 1 leverancier geeft duidelijkheid en een “stok” achter de deur bij onderhandelingen en calamiteiten.
- Koppelen van hardware onderling is gegarandeerd, en wordt niet het risico gelopen dat leveranciers onderling gaan “bekvechten” over de schuldvraag bij het b.v. niet kunnen koppelen van hardware onderling.
- Gebleken kwaliteit.

De veranderingstabellen en vergelijkingen die hierna volgen gaan alleen maar vergelijkingen aan met hardware geleverd door Hewlett Packard.

6.4.3 Performance (E3)

Dit is natuurlijk erg belangrijk. Zowel SAN, iSCSI en NAS zijn prima oplossingen en inzetbaar voor vele toepassingen. In het geval van de opdrachtgever hebben we te maken met een aantal eisen die gehonoreerd moeten worden en die eigen maken de keuze iets gemakkelijker.

De opdrachtgever heeft dit jaar een NAS (Netware Appliance) uitgevoerd om een aantal redenen. Een reden was de slechte performance vooral t.o.v. van de reeds in gebruik zijnde SAN (EVA-3000 Hewlett Packard) en het beheer van onder andere de beveiliging van deze NAS was een drama. Dit samen met het feit dat we in het bovenstaande verhaal hebben kunnen lezen dat database systemen om een storage vragen op block-niveau en de opdrachtgever Oracle, SQL en Exchangeservers wil gaan clusteren maakt de keuze voor een NAS al onmogelijk. Dus een NAS oplossing valt hier al af.
6.4.4 Redundantie (E4) en High availability (E5)

Een SAN scoort op dit gebied veel hoger dan een iSCSI-device. Dat is natuurlijk niet zo verwonderlijk, een SAN wordt speciaal gebouwd op o.a. redundantie. Alles wat men maar kan bedenken is dubbel uitgevoerd en het SAN is opgebouwd uit alleen maar hoogwaardige componenten zoals fiber-channel bekabeling (intern/extern), fiber-disk enz. Een iSCSI device is niets anders dan een diskkabinet met iSCSI software en een klein stukje hardware. Hier wordt vaak een NAS voor gebruikt en een NAS is eigenlijk niets anders dan een standaard Proliant Server met een aangepast OS. De redundantie beperkt zich tot een beperkt aantal componenten. Dit is te zien in de veranderingstabel die getoond wordt bij de conclusie op het einde van dit hoofdstuk.

6.4.5 Schaalbaarheid (E6)

Onder schaalbaarheid verstaan we in dit geval de mate waarin de oplossing flexibel is waaronder b.v.

- Het "realtime" kunnen aanmaken, vergroten en toewijzen van (extra) diskruimte.
- De mogelijkheid om de hardware in de toekomst te kunnen uitbreiden (disken, switches enz.)

Als we ons beperken tot de keuzes van een SAN of iSCSI (in combinatie met een NAS) geldt voor allebei de oplossingen dat ze uit te breiden zijn met extra diskkabinettten evenals de switches.

6.4.6 Toekomstgericht (E7)

Dit is bij een SAN beter gewaarborgd omdat deze veel flexibeler is m.b.t. uitbreidingen dan een iSCSI combinatie. Er kan door het plaatsen van fiberswitches met een grotere capaciteit aan fiberaansluitingen flexibel omgegaan worden met de beschikbare aansluitcapaciteit. Dit is tevens mogelijk bij een iSCSI apparaat maar dan praten we over standaard Ethernet aansluitingen en rijst al snel de vraag of het iSCSI apparaat, wat betreft capaciteit, dat wel aan kan. Vooral omdat de vraag naar meer snelheid (performance) in de toekomst alleen maar toe zal nemen. Met als oorzaak de steeds groter wordende datastromen.

6.4.7 Naadloos koppelen aan de huidige infrastructuur (E8)

Op dit moment is er in de huidige infrastructuur van de opdrachtgever reeds een SAN (EVA-3000) aanwezig, die aangeschaft is in het kader van de vervanging van de aanwezige UNIX-systemen, en later uitgebreid is met extra diskcapaciteit ten behoeve van een project die de digitalisering regelt binnen de gemeente Oss (post en facturen). Dit SAN is nog uit te breiden met 1 volledig diskkabinet en de fiberswitches (8-poorts) zitten nog niet aan hun volledige capaciteit (nog enkele poorten beschikbaar).

Het geeft veel voordelen en extra mogelijkheden om hier een tweede SAN aan toe te voegen (koppelen) waaronder redundantie, continuïteit, schaalbaarheid enz.

De mogelijkheid is dan aanwezig om in de toekomst dit tweede SAN op een andere locatie te plaatsen, te denken valt aan uitwijk en remote storage.
Het huidige, niet te vervangen, serverpark bestaat uit HP DL360 en HP DL380 servers en er wordt gebruikt gemaakt van HP Management Software (Systems Insight Manager). De 19" racken bij de opdrachtgever zijn van een afwijkend type, normaal gesproken wordt er gebruik gemaakt van vierkante gaatjes om de inbouwsleëen van de servers (en andere componenten) mee te borgen. Bij de opdrachtgever wordt er gebruik gemaakt van 19" racken die voorzien van ronde gaatjes, HP is de enige leverancier die inbouwsleëen levert voor dit soort kasten (is van origine een echt HP product uit de tijd dat Compaq nog Compaq was). Hier moet rekening mee gehouden worden.

Op dit moment wordt er door de opdrachtgever gebruik gemaakt van Data Protector versie 5.5 software van HP voor de backups. De licenties van deze software zijn gratis te verhuizen naar een nieuwe backupstructuur. Om de conversies niet nodeloos ingewikkeld te maken verdient het de voorkeur om in de nieuwe infrastructuur Data Protector versie 5.5 te blijven gebruiken. Een extra voordeel is dat het pakket al jaren gebruikt wordt door de medewerkers en dus voor de dagelijkse werkzaamheden geen uitleg meer behoeft.

6.4.8 Transparant (E9)
Wanneer men een SAN (EVA3000) aan een tweede SAN (EVA4000) koppelt dan creëert men in principe één SAN door te werken met zogenaamde Fabrics en Zones (zie technisch ontwerp) Er is geen extra opleiding nodig voor de beheerders, vooral omdat er geen andere beheerstool behoeft te worden gebruikt en dat is een erg groot voordeel. Bij de combinatie SAN gekoppeld met een iSCSI-apparaat is opleiding van de beheerders wel nodig omdat hier een compleet andere beheersomgeving voor wordt gecreëerd, en dat geeft dus niet de gewenste transparantie.

6.4.9 Moet binnen de eisen van het financiële budget passen (E10)
Hier volgt een tabel met de geschatte kostprijs van de drie genoemde producten. De A2 is een combinatie van iSCSI incl. een gemiddelde Hewlett Packart NAS oplossing.
6.5 Conclusie

Er kan maar één conclusie getrokken worden na het bekijken van de hierboven staande tabel, en dat is dat een tweede SAN de beste optie is.
ONTWERP
FASE
7 Het ontwerp van de nieuwe infrastructuur

De eerste keuze is gemaakt tijdens de analysefase. Er is besloten om een tweede SAN-omgeving te koppelen aan de reeds bestaande SAN-omgeving. Door deze keuze kan begonnen worden met het ontwerpen van de nieuwe infrastructuur. De nieuwe SAN-omgeving zal gaan fungeren als een spin in een web.

7.1 Inleiding

In overleg met de opdrachtgever is besloten te kiezen voor een implementatie van een Windows cluster infrastructuur, die (een deel van) de huidige Windows infrastructuur gaat vervangen.

In deze paragraaf wordt het ontwerp vastgelegd voor de nieuwe cluster infrastructuur. Het ontwerp zal de technische uitgangspunten bevatten waarmee de nieuwe omgeving geïmplementeerd wordt. De volledige technische details worden vastgelegd in de einddocumentatie die te vinden is in het naslagwerk “GENESIS”. Deze wordt opgeleverd, aan de opdrachtgever, als een apart document. Dit document wordt opgeleverd als onderdeel van deze opdracht. Dit om deze scriptie leesbaar te houden en om geheimhouding van de scriptie te voorkomen. Het naslagwerk zal ter inzage liggen op de afstudeerzitting.

In dit ontwerp wordt de inrichting van een nieuwe cluster omgeving, in samenspraak met de opdrachtgever, vastgelegd. Het ontwerp zal bestaan uit de volgende onderdelen:

- Functioneel ontwerp
- Detail ontwerp
- Technisch ontwerp

Functioneel ontwerp

In het functionele ontwerp van de nieuwe infrastructuur worden de benodigde en gewenste functionele elementen in de cluster infrastructuur benoemd en toegelicht.

Detail ontwerp

In het detail ontwerp wordt de gebruikte hardware configuratie belicht.

Technisch ontwerp

In het technische ontwerp worden de functionele elementen uitgewerkt. Het technische ontwerp vormt de specificatie voor de technische implementatie van de cluster infrastructuur, maar bevat geen implementatie gegevens en/of instructies.

De blauwdruk, die hierdoor zal ontstaan, zal dienen als basis voor de gewenste implementatie.
In dit ontwerp worden onder andere de volgende onderdelen vastgelegd:

- Server configuraties
- Cluster inrichting.

De blauwdruk is tevens de basis voor het documenteren van de cluster infrastructuur tijdens en na de implementatie.

Afbakening
Het ontwerp voor de nieuwe infrastructuur voorziet niet in de volgende aspecten:

- Gedetailleerde configuratie gegevens van de software.
- Het ontwerp van de LAN/WAN omgeving. (valt buiten de scope van de opdracht)
7.2 Ontwerp nieuwe omgeving

7.2.1 Huidige omgeving (Augustus 2006)*

In de huidige omgeving (augustus 2006) zijn de te vervangen servers van het type “standalone” of te wel deze servers beschikken allen over hun eigen disken in een RAID 1 (mirroring) of RAID 5 (striping met distributed parity). Maar dat is geen garantie dat de server niet defect kan raken.

Begeeft één van deze servers het is direct de functionaliteit van deze server weg, of te wel als de Exchangeserver stopt met functioneren (OS en/of hardware fout) dan is het direct afgelopen met de mail en agendafuncties in de huidige infrastructuur.

Alle servers zijn aangesloten op één taperobot, natuurlijk bevinden zich 4 tapedrives in deze robot maar als de robot zelf niet te benaderen is of in storing “valt” is het direct afgelopen met de backup functionaliteit. Niet alleen de backup is cruciaal maar ook de restore activiteiten zijn erg belangrijk, en dat wordt nog wel eens over het hoofd gezien.

* Om een vergelijking te kunnen maken tussen de huidige- en nieuwe omgeving kunt u gebruik maken van de speciaal voor dit doel gemaakte uitklappagina. Deze is opgenomen als laatste pagina van deze paragraaf.
7.3 De keuze van de servers en de backupoplossing

7.3.1 Inleiding

Zoals bij de keuze van het SAN reeds besproken is heeft de opdrachtgever expliciet aangegeven dat de aan te schaffen computerhardware van het merk Hewlett Packard moest zijn. We gaan in onze vergelijking uit van servers en een tapelibrary van dit merk.

7.3.2 De servers

Samen met de opdrachtgever is er besloten om de keuze van de servers te beperken tot 3 types (zie tabel). Dit vooral met het oog op de reeds gemaakte keuzes voor Microsoft clustering en de SAN technologieën. Deze keuzes zijn bewust gemaakt, het zijn namelijk servers waarvan er reeds een aantal van dit type in de infrastructuur van de opdrachtgever aanwezig zijn. Eventuele omwisseling (bij calamiteiten) is dan mogelijk. De reeds positief opgedane ervaringen met deze servers, m.b.t. onder andere betrouwbaarheid, maakt deze keuze tot een juiste. (Proven technologie)

Er is eerst onderzocht wat de minimale eisen zouden moeten zijn van de diverse servers. Er zijn servers die gebruikt gaan worden als clusternode's en er zijn servers die gebruikt moeten gaan worden als domaincontrollers. Op zich verschillen de eisen tussen deze twee niet zo heel erg veel, alleen is het bij de clusternode’s van belang dat de servers die samen binnen één cluster gaan sparren van hetzelfde type zijn en wat betreft de hardware identiek moeten zijn. Dit om problemen bij een eventuele failover voor te zijn. Het is daardoor zelfs aan te bevelen om ALLE clusternode’s van hetzelfde type en release level te kopen.

Tevens moet er met de keuze van de clusternode’s rekening gehouden worden met het feit dat er 2 Fiber HBA’s en een extra NIC (ten behoeve van de heartbeat tussen de twee clusternode’s) geplaatst moeten kunnen worden. Of te wel er moeten minimaal 3 vrije PCI sloten beschikbaar zijn. De twee domaincontrollers hebben aan 2 vrije PCI sloten genoeg omdat deze niet als cluster opgebouwd gaan worden en niet op het SAN aangesloten worden. De chipset van het moederbord moet voldoen aan de eis “intel E7520”. De reeds bij de opdrachtgever aanwezige servers van dit type bevatten namelijk deze chipset. Het voordeel hiervan is dat hier geldt dat bij een evt. calamiteit een minder belangrijke server ingezet kan worden om de defecte domaincontroller of clusternode (tijdelijk) te vervangen. Het is dan een kwestie van o.a. de disken overzetten. Men blijft dan bespaard van de befaamde “blue screens” van Microsoft doordat de chipsets van beide servers niet overeen blijken te komen.

De eisen zijn:

Eisen voor de Clusternode.

- (E1) 2 processoren moet mogelijk zijn
- (E2) Processor moet minimaal van het type XEON 3.0 Ghz /L2 Dual-core zijn
- (E3) 3 vrije PCI sloten
- (E4) Chipset moet intel E7520 zijn
- (E5) Minimaal 4 memorie slots
- (E6) 2 diskbays
- (E7) Mirroring kunnen toepassen (RAID 1)
- (E8) 2 LAN-poorten van 1 Gb
- (E9) ILO-poort (Management)
- (E10) 2 voedingen moet mogelijk zijn
- (E11) Memory backed write cache moet mogelijk zijn
- (E12) DVD-ROM unit
- (E13) Moet binnen de eisen van het financiële budget passen
Eisen voor de Domaincontroller

Deze zijn identiek aan de eisen van de clusternode met één uitzondering en dat is de eis van 3 vrije PCI sloten, deze server heeft voldoende aan 2 vrije sloten.

Vergelijkingstabel Servers

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E3</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>E4</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E6</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E7</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E8</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E9</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E10</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E11</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E12</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>E13</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

score

| | 17 | 17 | 14 |

Uit de bovenstaande tabel, waarbij 3 standaard server configuraties van Hewlett Packard, met elkaar zijn vergeleken, is goed te zien dat de DL360 en DL380 servers het meest geschikt zijn. Ook met betrekking tot het financiële gedeelte geeft dit duidelijkheid. Vooral als de wetenschap mee telt dat er 2 x DL360 en minimaal 10 x DL380 servers nodig zijn om de beoogde nieuwe clusterinfrastructuur te kunnen realiseren.

Om tot een goede keuze te kunnen komen voor de processor keuze van de bovenstaande servers zijn er testen (benchmarks) uitgevoerd op een “oude” LH6000 (met twee XEON SINGLE-CORE 700 Mhz processoren) en een standaard DL380 (met twee XEON DUAL-CORE 3.4 Ghz processoren).

Aan de testresultaten (zie figuren benchmark) is te zien hoeveel snelheidswinst behaald gaat worden met deze aanpassing. Samen met een supersnel SAN zullen de werknemers (ambtenaren) bij de opdrachtgever behoorlijk hard moeten gaan werken om het deze nieuwe infrastructuur het maar een beetje moeilijk te gaan maken. Het voordeel hiervan is dat er bezuinigd gaat worden op de verwarmingskosten. Dat komt de TCO weer ten goede.
7.3.3 Benchmarking

Processor vergelijking

Huidige LH6000 server

Standaard DL380

Memorie vergelijking

Huidige LH6000 server

Standaard DL380
7.3.4 De Tapelibrary

De keuze hierin wordt bepaald door de opdrachtgever. De nieuw aan te schaffen tapelibrary moet van het zelfde type zijn als het reeds aanwezige exemplaar.

Dit type tapelibrary bevat 2 stuks LTO-2 tapedrives, een upgrade naar een LTO-3 type is niet aan te raden.

Waarom geen LTO-3 ?

Eerst even een vergelijking maken tussen de LTO-1 en LTO-2 drives:

LTO-1
Opslagcapaciteit van 100 GB ongecompressed, maximaal 200 GB gecompressed.
Snelheid maximaal 20-40 MB/s (ongecompressed/gecompressed)

LTO-2
Opslagcapaciteit van 200 GB ongecompressed, maximaal 400 GB gecompressed.
Snelheid maximaal 40-80 MB/s (ongecompressed/gecompressed)

Er is tevens een LTO-3 standaard (80/160) maar die is veel te snel voor een Windows omgeving, deze wordt b.v. gebruikt in een UNIX-omgeving waar de aanvoer van data veel sneller gaat omdat hier b.v. veel minder overhead is.

Toch geeft zelfs de snelheid van een LTO-2 drive al problemen. Dit komt o.a. omdat de opdrachtgever steeds meer gebruik gaat maken van digitalisering en de medewerkers relatief veel kleine bestanden (Word e.d.) creëren. In dit geval kan de snelheid van de backupomgeving in het nadeel gaan werken. Wanneer een backupjob wordt gestart wordt er eerst een index aangemaakt (de zogenaamde “Tree-Walk”) van alle te backupen bestanden. In die index worden een aantal specifieke zaken over dat bestand geplaatst zoals rechten, share informatie enz. Na het creëren van deze index start de backupjob met het lezen en schrijven van de data en voegt steeds relevante informatie, uit de index, aan de weg te schrijven data toe. De drives in de taperobot moeten in streaming-mode (continue draaien) blijven om zo effectief mogelijk te kunnen werken. Op het moment dat er allemaal kleine bestandjes weggeschreven moeten worden staat de drive echt te “flipperen” (officiële naam is “Shoe-Shine”) of te wel de drive moet steeds stoppen en starten en dat is funest voor de drive omdat het mechanisme dan erg snel slijt.

Om dit voor te voorkomen zijn er een aantal mogelijkheden:

Data Protector geeft de mogelijkheid om met maximaal 32 data-streams simultaan naar de robot te schrijven (12 simultane streams is meestal meer dan voldoende). Als men 12 data-streams simultaan zou gebruiken krijgt men het effect dat eerst een blokdata van stream één wordt weggeschreven dan een blokdata van stream twee enz. tot dat 12 geweest is dan begint hij weer bij 1 enz. Dit verhoogt de schrijfsnelheid behoorlijk. Bij de restore zal men merken dat het terugschrijven van specifieke data langer duurt omdat bij het terug plaatsen, van de op deze manier weggeschreven data, eerst blok 1 gelezen wordt. Daarna worden er 11 blokken overgeslagen alvorens blok 2 van dat bestand gelezen kan worden, het verschil is door de snelheid van deze oplossing geen onoverkomelijk bezwaar.

Wat een tweede oplossing is en is toegepast (net zoals de vorige oplossing) is de mogelijkheid om Data Protector voor het spreekwoordelijke “lapje” te houden. Men kan dan de data van één server
in een aantal verschillende streams verdelen of te wel in plaats van 1 agent draaien er op die desbetreffende server er 3 simultaan van één en dezelfde server.

Deze oplossingen werken tot en met een LTO-2 drive maar een LTO-3 drive blijft de problemen houden.

7.3.5 Staging

Een derde oplossing kost extra geld, en die oplossing heet staging.

In het geval van Data Protector moet men betalen voor iedere Terrabyte die men via dit mechanisme wil backunen. De prijs voor een licentie van 1 Terrabyte kost 1.500,00 euro + de kosten van extra schijfcapaciteit die dient als (tijdelijke) opslag.

Het voordeel van dit mechanisme is dat het backupwindow kleiner wordt en men meer redundantie inbouwt.

Hoe werkt het?

Wanneer men beschikt over een SAN oplossing, zoals dat het geval is bij de opdrachtgever, dan creëert men, op het SAN, een extra LUN t.b.v. de backupserver. Deze LUN wordt als extra disk aan de backupserver gekoppeld. Op deze disk maakt men folders aan die men gaat gebruiken als virtuele tapes.

Binnen Data Protector installeert men een virtuele taperobot (dit is de speciaal hiervoor aangemaakte disk). Daarna creëert men een speciale mediapool (bibliotheek met tapes voor één speciaal doel). Men kan deze virtuele taperobot gewoon toewijzen aan een backupjob en die zal dan alle data gewoon wegschrijven naar een tape uit de speciale mediapool.

Als de backupjob beëindigd is kan er automatisch een backupjob gestart worden die alle data van de virtuele tape(s) als één groot blokdata naar een fysieke tape streamed. Met de nadruk op streamen want het gaat hier over één groot blok data en men vermijdt hiermee het al eerder genoemde “Shoe-Shine” effect.
Een tweede voordeel is dat wanneer men op de dag na de backup data moet restoren, dan doet men dit vanaf de virtuele tape en dat gaat razend snel. Dit is eigenlijk een dubbel voordeel omdat de beveiligde data, van de opdrachtgever, iedere (werk)dag om 10.00 's morgens naar een externe locatie wordt overgebracht (zie risico inventarisatie). Moet er om 11.00 uur iets gerestored worden is die data dus niet meer in het gemeentehuis aanwezig en moet gehaald worden. En dat kost allemaal extra tijd.

Diagram:

1. Virtuele taperobot
2. Virtuele tapedrives
3. Mediapool
4. Virtuele tape
7.3.6 Conclusie

De vergelijkingstabel en de testen van deze paragraaf geven duidelijk aan dat, binnen de gestelde grenzen van de opdrachtgever, de configuratie keuze voor de domaincontrollers, clusternodes en tapelibrary als volgt is:

Domaincontroller

Standaard DL360 4Gp server

1 processor (Intel XEON 3.4 Ghz /L2)
2048MB memorie (PC2-3200/ECC/DDRI/SDRAM) geplaatst als 2 x 1024Mb modules
2 stuks 36GB SCSI disken (RAID 1 mirroring)
1 DVD-rom unit (software wordt steeds meer op DVD-media geleverd)
Battery Backed Write Cache Optie kit (beveiliging van niet weggeschreven data bij spanning verlies)

Clusternode

Standaard DL380 4Gp server

2 processoren (Intel XEON 3.4 Ghz /L2) met uitzondering van het SQL-cluster*
4096MB memorie (PC2-3200/ECC/DDRI/SDRAM) geplaatst als 4 x 1024Mb modules
1 extra NIC t.b.v. de heartbeat tussen de clusternodes*
2 Storage Works 2Gb Fiber Channel HBA’s (koppeling met het SAN)
1 DVD-rom unit (software wordt steeds meer op DVD-media geleverd)

Tapelibrary

MSL-6030 Tapelibrary

Dit op verzoek van de opdrachtgever. Deze wordt uitgerust met 2 LTO-2 tapedrives en wordt fysiek, via een Ultra-320 Scsi-kabel, verbonden met één van de backupnodes.

Staging

Wanneer van deze techniek gebruik gemaakt zou gaan worden moet er rekening gehouden worden met extra vrij diskcapaciteit in de SAN omgeving.

Op verzoek van de opdrachtgever is uitgerekend wat deze extra diskcapaciteit zou gaan inhouden.

Als deze techniek kruislings toegepast zou gaan worden zou er 1 extra diskcabinet met 14 stuks 250 GB Fata disken aangeschaft dient te worden per SAN (dus 2 keer).

Er is door de opdrachtgever voor gekozen om voor deze optie te kiezen en de voorgestelde additionele diskcapaciteit in de aanbesteding op te nemen.
7.4 Functioneel ontwerp

In het functionele ontwerp van de nieuwe infrastructuur worden de benodigde en gewenste functionele elementen in de clusterinfrastructuur benoemd en toegelicht.

7.4.1 Clusteromgeving

In de cluster omgeving worden de volgende services aangeboden:

- **Database cluster:**
 Binnen een Microsoft SQL Server 2005 omgeving worden diverse databases gehost om verschillende applicaties te kunnen bedienen. Dit cluster is opgebouwd als een Active/Passive* cluster omdat de White Papers van Microsoft aangeven dat een Active/Active cluster voor erg veel complexiteit kan zorgen en wordt zonder meer afgeraden.

- **E-mail cluster:**
 Exchange Server 2003 wordt ingezet als mail server applicatie. Het beheert o.a. de mailboxen van gebruikers en verzorgt het verzenden en ontvangen van e-mail berichten. Daarnaast voorziet het in kalender functionaliteit. Dit cluster is opgebouwd als een active/passive cluster omdat de white papers van Microsoft aangeven dat een active/active cluster voor erg veel complexiteit kan zorgen en zonder meer wordt afgeraden.

- **Applicatie cluster:**
 Via deze servers worden diverse applicaties aangeboden aan gebruikers (active/active). Dit cluster neemt de DHCP en DFS functionaliteit voor zijn rekening (Als speciale clusterresources)

- **File cluster:**
 De File servers voorzien de gebruikers o.a. in een centrale plaats voor de opslag van data (active/active).

- **Backup cluster:**
 HP DataProtector 5.5 wordt ingezet als centrale backup applicatie. De functionaliteit van het pakket wordt verdeeld over 2 servers, te weten een cellmanager en media server (active/active).

- **Test cluster:**
 Dit cluster wordt ingezet voor 2 doeleinden. Te eerste als testcluster om hier software installaties op te kunnen testen. Ten tweede als inzetbare productienode als er een calamiteit ontstaat. Deze servers zijn met betrekking tot de hardware configuratie identiek aan de productieservers en kunnen dus zo omgewisseld worden met een defect productie-exemplaar.

Voor ieder van de hierboven beschreven services is een apart cluster ingericht met twee nodes. Hiermee komt het totaal op zes clusters en twaalf nodes. Deze clusters zijn gekoppeld aan een nieuwe EVA 4000 omgeving en de reeds bestaande EVA 3000 omgeving voor de opslag van data.

* Er wordt hier gesproken over active/active en active/passive clusternodes.

Bij een Active/Active cluster vervullen allebei de nodes een eigen (actieve) taak. In het geval van een zogenaamde failover neemt de overgebleven node het werk van de niet meer active node over, of te wel hij moet op dat moment alle taken binnen dat cluster alleen vervullen.

Bij een active/passive cluster is één node actief belast met de taken binnen dat cluster, de tweede node staat standby om de taken van de eerste node over te nemen bij een eventuele failover.
7.4.2 Domein controllers

Naast de clusteromgeving worden er tevens twee losse domein controllers opgebouwd. Deze servers verzorgen de authenticatie van gebruikers en groepen met behulp van Active Directory. Daarnaast voorzien zij in de benodigde netwerkservices zoals DNS. De functionaliteit van DHCP zal worden verzorgd door het Applicatie Cluster zodat deze service redundant uitgevoerd wordt en deze niet op twee verschillende plaatsen beheerd behoeft te worden.

Hieronder een schematische weergave van de gehele SAN omgeving na het project “Genesis“.
7.5 Detailontwerp

Nu het functioneel ontwerp gereed is, kan er meer in detail gekeken worden naar de aantallen, eisen en specificaties van de aan te schaffen hardware.

7.5.1 Benodigde hardware

- 2 UPSen (15KVa per stuk)
- 2 DL360 servers
- 12 DL380 servers
- 1 SAN (EVA4000)
- 1 MSL6000 taperobot
- 2 Racken van 19"

7.5.2 UPS

De "huis" installateur van de opdrachtgever heeft berekend dat er voor de aan te schaffen hardware volstaan kan worden met 2 UPSen van elk 15KVa. Deze UPSen moeten voorzien in de tijdelijk stroomvoorziening bij stroomuitval (20 minuten). Het noodaggregaat van de opdrachtgever neemt in minder dan 1 seconde de stroomvoorziening over maar er moet ook rekening gehouden worden met andere calamiteiten.

De UPSen moeten voorzien zijn van een SNMP management module (voor monitoring doeleinden) en de servers moeten voorzien worden van Netwatch software voor communicatie met deze UPSen.

7.5.3 Servers

De configuratie van de servers die als clusternodes gaan fungeren moet minimaal voldoen aan de volgende specificaties:

- 4 GB intern geheugen
- 2 XEON 3.4 GHz processoren (met uitzondering van de SQL en backupnodes)
- 3 Lan aansluitingen (2 x teaming en 1 x Heartbeat)
- 1 DVDröm
- 2 Harddisks (SCSI) van elk 36 GB (alleen voor het OS)
- 2 Storage Works HBA kaarten (verbinding met het SAN)
- 1 Battery Write Cache (valt de stroom toch weg zorgt deze batterij ervoor dat de data die nog in de write cache is achter gebleven bij het opstarten alsnog weg geschreven kan worden.)

De configuratie van de servers die als domaincontrollers gaan fungeren moet minimaal voldoen aan de volgende specificaties:

- 2 GB intern geheugen
- 1 XEON 3.4 GHz processor
- 2 Lan aansluitingen (Teaming)
- 1 DVDröm
- 2 Harddisks (SCSI) van elk 72 GB
- 1 Battery Write Cache
Er is in dit stadium reeds een keuze gemaakt voor een tweede SAN omgeving en dat zal de EVA4000 van Hewlett Packard worden.

Het nieuwe SAN (EVA4000) wordt gekoppeld aan de reeds aanwezige EVA3000 zodat de twee SAN's een eenheid gaan vormen.

Deze koppeling wordt gemaakt door de switches van beide SANs onderling te verbinden. Men kan dit het best vergelijken met een zogenaamde trunk verbinding binnen een ethernetwerk.

Deze koppelingen noemt men een ISL koppeling (Inter Switch Link). Dit is echt een voorbeeld van transparantie. Men heeft namelijk maar de beschikking over één “Management Appliance Server” (SAN manager) nodig dit om de gehele nieuwe SAN-omgeving mee te kunnen configureren.

Deze koppeling noemt men een zogenaamde switch domain. Het domain is een uniek identificatienummer voor iedere switch in het SAN.

<table>
<thead>
<tr>
<th></th>
<th>switch1</th>
<th>switch2</th>
<th>switch3</th>
<th>switch4</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switches 21 en 31 vormen een fabric
Switches 22 en 32 vormen de andere fabric

Er wordt gekozen voor twee aparte fabrics omdat bij een eventuele firmware upgrade er per fabric geüpgrade kan worden zonder dat de gehele SAN omgeving uit moet.

Als men namelijk, via deze manager, de switchpoorten gaat vergelijken dan ziet men 8 poorten die met een “2” beginnen (EVA3000) en direct daaronder 16 poorten die met een “3” beginnen (EVA4000).

Er wordt gebruik gemaakt van het zoning principe. Omdat er op de EVA3000 reeds 2 HP RP4440 UNIX server aangesloten zijn en met betrekking tot de EVA4000 de mogelijkheid moet zijn om VMware ESX servers te koppelen, wordt er van het zoning principe gebruik gemaakt.

Met zoning creëert men in principe aparte “eilandjes” binnen het SAN en de data van het ene “eilandje” ziet de data op het andere “eilandje” niet. UNIX en Windows gebruiken bijvoorbeeld een ander SCSI protocol en door elkaar gaat dat toch echt problemen geven.
De EVA4000 wordt standaard voorzien van 2 controllers voor o.a. de aansturing van de disken en koppeling naar het SAN zelf. Iedere controller kan communiceren met de disken en met het SAN waardoor bij uitval van één controller de EVA functioneel blijft.

De diskcapaciteit van de EVA4000 moet bestaan uit:

<table>
<thead>
<tr>
<th>Disk groep nummer</th>
<th>Disk size voor groep</th>
<th># disks in groep</th>
<th>Totale capaciteit</th>
<th>Disk groep te benutten capaciteit</th>
<th>VRaid5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146</td>
<td>30</td>
<td>4380 GB</td>
<td>3900 GB</td>
<td>2500 GB</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>14</td>
<td>2044 GB</td>
<td>1752 GB</td>
<td>1171 GB</td>
</tr>
</tbody>
</table>

De diskcapaciteit van de EVA3000 bestaat uit:

<table>
<thead>
<tr>
<th>Disk groep nummer</th>
<th>Disk size voor groep</th>
<th># disks in groep</th>
<th>Totale capaciteit</th>
<th>Disk groep te benutten capaciteit</th>
<th>VRaid5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146</td>
<td>28</td>
<td>4088 GB</td>
<td>3640 GB</td>
<td>2335 GB</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>28</td>
<td>4088 GB</td>
<td>3505 GB</td>
<td>2345 GB</td>
</tr>
</tbody>
</table>

Wanneer men de capaciteit en het aantal disken vermenigvuldigd komt de uitkomst hiervan niet overeen met de waarde in de *Totale capaciteit* kolom. Dat klopt ook wel omdat er maar 90% overblijft van de opgegeven disk capaciteit. De waarde in de *Disk groep te benutten capaciteit* kolom is ook minder dan de *Totale capaciteit* kolom. Het verschil is precies de capaciteit van 2 disken. Deze ruimte wordt gereserveerd voor het geval er 1 of 2 disken zouden failen. Deze ruimte wordt dan gebruikt als tijdelijke diskruimte om de gefailde disken tijdelijk te kunnen vervangen. Zie hier ook het hoofdstuk implementatie. In dit hoofdstuk wordt een grafische weergave getoond van dit principe.

Omdat er gebruik gemaakt gaat worden van het staging-principe moet deze EVA uitgebreid worden met 1 extra diskkabinet incl. 14 stuks 250 GB Fata disken.

Fiber-disk versus Fata-disk

De kwalitatief hoogwaardige Fiberdisken zullen worden gebruikt voor de belangrijke actuele data. De goedkopere Fata-disken zullen worden gebruikt ten behoeve van de staging (Zie de paragraaf “Backup “) In het hoofdstuk implementatie wordt dieper ingaan op de verschillen tussen een Fiberdisk en een Fata-disk.

Multipathing

Voor Windows is standaard de full-version van MPIO (multiPath I/O) aanwezig en zal worden ingezet. Met deze versie is het mogelijk alle beschikbare paden tegelijk te gebruiken. (Zie hoofdstuk Implementatie)
7.5.5 MSL library (Taperobot)

<table>
<thead>
<tr>
<th>Features</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>MSL6030L2</td>
</tr>
<tr>
<td>Data Cartridge Slots</td>
<td>30 (in twee verwijderbare 15-slot tape cartridge magazines) Waarvan 1 Mailslot.</td>
</tr>
<tr>
<td>Supported Media</td>
<td>• HP Ultrium 400GB Data Cartridge (LTO Ultrium 2)</td>
</tr>
<tr>
<td></td>
<td>• HP Ultrium 200GB Data Cartridge (LTO Ultrium 1)</td>
</tr>
<tr>
<td>Tape drive snelheid</td>
<td>Ultrium 2, 30 MB/sec per drive (60 MB/sec met compressie)</td>
</tr>
</tbody>
</table>

De extra MSL Library wordt, in navolging van de reeds bestaande library, rechtstreeks gekoppeld aan één van de clusternodes (via een Ultra 320 SCSI-kabel). De directe reden hiervoor is een financiële afweging die gemaakt is bij de aanschaf van de eerste library. De rechtstreeksse koppeling via fiber aan het SAN was en is erg duur (> 15.000,00 euro) en de opdrachtgever is erg tevreden met de reeds bestaande oplossing. Dus wordt ook voor de tweede library voor deze oplossing gekozen.

7.5.6 Data Protector Backup Software

Data protector versie 5.5 wordt geclusterd.

De Cellmanager wordt cluster-aware geïnstalleerd wat inhoudt dat bij uitval van één node de cellmanager door draait via de andere node. Hiervoor worden de backupservers voorzien van Windows 2003 Enterprise edition (zoals alle clusters).

Er is gekozen voor twee aparte MSL-tapelibrarys uit redundantie oogpunt. Deze beide MSL-tapelibrarys worden via een SCSI-kabel rechtstreeks aangesloten op een node (elke node 1). Failt één van de nodes dan is er altijd nog één MSL-tapelibrary beschikbaar voor Data Protector. De nodes worden, zoals iedere node, aangesloten op het SAN zodat deze gebruik kunnen maken van shared storage t.b.v. clustering en staging.

Alvorens Data Protector cluster-aware te kunnen installeren dient eerst het cluster-resource beschikbaar te zijn.(zie “Clustering in een notendop”)

7.5.7 Management door Systems Insight Manager

Op de bestaande Management Appliance server is HP Systems Insight manager geïnstalleerd. De huidige SAN componenten zijn hierin opgenomen en zullen aangevuld worden met de nieuwe componenten.

De nieuwe hardware componenten worden ingesteld om hun trap's te versturen naar deze reeds bestaande Management Appliance server (via SNMP).

Deze software is in staat om zelfstandig een database te creëren van alle aangesloten componenten doormiddel van het uitlezen van de eventueel aanwezige MIBS.

Deze software wordt door de vele informatie ook gebruikt als rapportage middel, en kan doormiddel van vooraf ingestelde waardes acties ondernemen, zoals het versturen van een mail als een bepaalde "trigger" waarde bereikt is (b.v. wanneer een disk voor 90% vol is).

Een uitgebreide versie van het detailontwerp kun vinden in het naslagwerk “GENESIS”
7.6 Technisch Ontwerp

In de paragraaf “Functioneel Ontwerp” zijn de benodigde functionele componenten aangegeven waaruit met name de Cluster omgeving wordt opgebouwd. In deze paragraaf zijn de inrichting specificaties beknopt vastgelegd voor de technische implementatie. De uitgebreide versie vindt u in het naslagwerk “GENESIS”

De volgende technische inrichtingsspecificaties zijn vastgelegd:

- Server configuratie; richtlijnen voor de inrichting van de diverse servers.
- Cluster; richtlijnen voor de inrichting van het cluster.

Server configuratie

Hier wordt de configuratie beschreven van de serversystemen in de Windows infrastructuur. Het betreft hier vooral de standaardisatie van de inrichting van de diverse serversystemen zoals onder andere de diskconfiguratie, filesystemen, de software en diverse te implementeren services.

De configuratie van de clusternodes zijn vrijwel identiek namelijk:

<table>
<thead>
<tr>
<th>Server</th>
<th>Model</th>
<th>Diskconfiguratie</th>
<th>CPU</th>
<th>RAM</th>
<th>NIC</th>
<th>HBA</th>
<th>SCSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster node</td>
<td>HP DL380G4</td>
<td>2x 36GB (15K), RAID-1</td>
<td>2x 3.4GHz</td>
<td>4GB</td>
<td>2x 1Gb 2x 1Gb</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td>DMC001 Domein controller</td>
<td>HP DL360G4</td>
<td>2x 36GB (15K), RAID-1</td>
<td>2x 3.4GHz</td>
<td>4GB</td>
<td>2x 1Gb</td>
<td>n.v.t.</td>
<td>0</td>
</tr>
<tr>
<td>CLU-BCK01 Cluster node</td>
<td>HP DL380G4</td>
<td>2x 36GB (15K), RAID-1</td>
<td>2x 3.4GHz</td>
<td>4GB</td>
<td>2x 1Gb 2x 1Gb</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>CLU-DBS01 Cluster node</td>
<td>HP DL380G4</td>
<td>2x 36GB (15K), RAID-1</td>
<td>1x 3.4GHz</td>
<td>4GB</td>
<td>2x 1Gb 2x 1Gb</td>
<td>2 0</td>
<td></td>
</tr>
</tbody>
</table>

8 identieke servers voor: Applicatie-, Fileserver-, Test- en Mailclusters.

2 identieke servers voor: Domaincontrollers.

2 identieke servers voor: Backupcluster, er is maar 1 HBA-kaart aanwezig omdat er in deze server tevens een dubbele SCSI-kaart geplaatst wordt ten behoeve van de tapperobot.

2 identieke servers voor: MS-SQL. Er wordt maar 1 processor gebruikt omdat deze server op dit moment nog niet zo zwaar belast zal worden en er daardoor geen extra MS SQL enterprise licentie van 19.000,00 euro gekocht behoeft te worden. Deze licentie wordt namelijk per CPU berekend.

7.6.1 Diskconfiguratie

In alle nieuwe server systemen wordt de diskconfiguratie redundant uitgevoerd, middels mirroring (RAID-1). Bij uittal van een van beide schijven zal het systeem op een enkele disk verder werken. Na vervanging van de defecte disk (hot swappable) wordt de array automatisch hersteld.
7.6.2 Netwerkreddantie (NIC)
Voor de verbinding naar het LAN worden per node twee interfaces tot één logische verbinding gebundeld (teaming). Bij uitval van een van de interfaces blijft de netwerkconnectie via de andere interface behouden.

In de clusternodes wordt bovendien een extra netwerkadapter geplaatst voor het cluster interconnectie netwerk, waarover de heartbeat van het cluster verloopt. (Het alternatieve path is de Public aansluiting.)

Deze aansluitingen worden niet rechtstreeks d.m.v. een kruiskabel verbonden, maar deze aansluitingen worden verbonden met een 100 MB Cisco Switch (geïnstalleerd per rack). De netwerkkaarten hebben een link nodig om geactiveerd te worden. De switch zorgt voor die link. Bij een kruiskabel dient de andere netwerkkaart voor de link te zorgen. Er is een kans dat beide netwerkkaarten op elkaar gaan staan te wachten om een link te krijgen (b.v. na het tegelijkertijd opstarten van de beide nodes). Het resultaat kan dan zijn dat het netwerk (heartbeat) niet opkomt. Voor een cluster maakt dit niet uit omdat de heartbeat dan over het userlan (Public) gaat.

7.6.3 Netwerkaansluiting beheer
Ten behoeve van het op afstand beheren van alle HP server systemen worden de beschikbare Integrated Lights Out (ILO) modules aangesloten op het LAN. (Deze aansluitingen worden verbonden met de interne 100 MB Cisco Switch die ook gebruikt wordt door de eerder genoemde “Heartbeat” verbindingen).

7.6.4 IP Adressen Servers
De cluster infrastructuur wordt opgenomen in het bestaande LAN. Naast een IP adres voor opname in het LAN krijgen de clusternodes een IP adres die is nodig ten behoeve van de Intergrated Lights Out (ILO) functionaliteit. Bovendien krijgen de verschillende cluster resources ieder een eigen IP adres.

Voor de clusters, servers en resources worden de volgende IP adressen gebruikt:

- 172.17.2.x /24 : Public LAN Clusters + Servers
- 172.17.3.x /24 : ILO Cluster nodes (Apart management Vlan)
- 172.19.4.X /24 : Testclusters
- 10.1.1.x : Private LAN Cluster nodes (Heartbeat)

7.6.5 Inrichting filesystemen
De clusterservers worden identiek geïnstalleerd met het besturingssysteem Microsoft Windows 2003 Enterprise edition inclusief servicepack 1. Dit in tegenstelling tot de domaincontrollers die worden voorzien van de standaard uitvoering omdat hier geen clusterfunctionaliteiten benodigd zijn.

De servers worden allemaal voorzien van interne disken die in een RAID-1 omgeving draaien, deze manier van opslaan geeft redundantie omdat de data simultaan (mirroring) wordt wegeschreven naar 2 disken. Als één van de disken zou “failen” draait het systeem gewoon door op de overgebleven disk.

De installaties van deze servers wordt uitgevoerd volgens eerder opgestelde standaard installatiehandleidingen (Clusternodes en standaard) die terug te vinden zijn in het naslagwerk “GENESIS”.

Versie 1.0 14 maart 2007 Pagina 52 van 90
Software

Buiten het Windows besturingssysteem (OS) om wordt er additionele software geïnstalleerd zoals:

7.6.6 Microsoft Exchange Server 2003

7.6.7 Microsoft SQL server

7.6.8 UPS agent software

Voor de status signalering van de noodstroomvoorziening aan de aangesloten servers wordt op de servers de UPS agent software geïnstalleerd.

7.6.9 Backup software

Ten behoeve van de backupoplossing worden alle backoffice systemen voorzien van de HP Data Protector backup agents voor het betreffende besturingssysteem. Hiernaast worden, afhankelijk van de server, de benodigde applicatieagents geïnstalleerd (SQL en Exchange).

7.6.10 Remote Desktop

Voor het remote managen van de Windows 2003 server systemen worden alle servers voorzien van de Terminal Services in remote admin mode. Hierdoor kan door de beheerder het server console worden overgenomen middels het Microsoft RDP protocol.

7.6.11 Diversen

De extra standaard software die geïnstalleerd wordt omvat o.a. een script dat om 18.00 uur (iedere avond) een Microsoft systemstate backup uitvoert. Deze wordt hierna gekopieerd naar een speciaal hiervoor gecreëerde virtuele disk die gekoppeld wordt aan de BCK001 (virtuele) server. Zodat de systemstate (huidige en 1 vorige versie) op zowel de C-partitie van de server staat als op de S-partitie van de backupserver BCK001.

Dit is nodig omdat de functionaliteit van Data Protector 5.5. hier een steek laat vallen, de configuratie die gebackuped wordt door Data Protector 5.5., tijdens de backup, is niet bruikbaar bij een crash-recovery. Hiervoor de systemstate backup nodig. Het script maakt indien nodig alle benodigde folders aan. (zie afbeelding)
Er wordt een klein softwarepakketje, genaamd **BGinfo** geïnstalleerd die op het bureaublad informatie van de server laat zien. Dit is vooral bij de clusternodes erg prettig zodat je kunt zien op welke node je nu eigenlijk aan het werken bent. Als de virtuele resource FPS001 bij voorkeur gekoppeld is aan CLU-FPS01 en deze is gefailed (het cluster heeft dus een zogenaamde failover gedaan) kan men dit direct aan de naam op het bureaublad zien dat er iets mis is gegaan, er zal dan de naam van CLU-FPS02 staan in plaats van CLU-FPS01.

<table>
<thead>
<tr>
<th>Hoofd Naam</th>
<th>TSE001</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS Versie</td>
<td>Windows 2003, Service Pack 1</td>
</tr>
<tr>
<td>IP Adress</td>
<td>172.17.2.101</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>172.17.2.254</td>
</tr>
<tr>
<td>DNS Server</td>
<td>172.17.2.201,172.17.2.202</td>
</tr>
<tr>
<td>Boot Time</td>
<td>2/2/2007 4:53 PM</td>
</tr>
</tbody>
</table>
In het hierboven staande plaatje is te zien dat de redundantie gewaarborgd wordt door gebruik te maken van o.a. de Microsoft clustertechnieken van het Windows 2003 Enterprise edition OS. Er zijn twee taperobots in het ontwerp opgenomen, met ieder twee tape-units, wat voldoende is om aan de eisen van het backupwindow (18.00 – 07.00) van de opdrachtgever te voldoen. Zelfs als er 1 taperobot uit zou vallen heeft de resterende robot nog genoeg capaciteit over om aan deze eis te blijven voldoen. Het gebruik van 2 SAN’s maakt het geheel extra redundant.
8 De werking van een Cluster in een notendop.

Binnen het netwerk van de opdrachtgever heeft de toegankelijkheid tot bestanden, applicaties en e-mail gegevens een hoge prioriteit. Daarom worden deze functies niet uitgevoerd als standalone servers, maar in een vijftal clusterconfiguraties opgenomen. Deze paragraaf beschrijft de configuratie van deze clusters, die ieder bestaan uit 2 servers (nodes), welke zorg dragen voor file, e-mail, database, backup en applicatie services.

Hieronder een schematische weergave van de configuratie van het databasecluster. In totaal zijn 6 clusters op deze wijze geconfigureerd.
Hieronder een logische tekening van een cluster.

![Cluster Diagram]

In het hiervoor gaande plaatje is als voorbeeld het applicatiecluster genomen (CLU-APP, APP001, APP002 enz.)

Een cluster bestaat uit minimaal 2 fysieke servers die we nodes noemen. Deze servers zijn weer fysiek gekoppeld aan een SAN waarvan de servers diskruimte krijgen toegewezen.

Dit is allemaal nog vrij logisch nu komt het “vage” gedeeltje. Waarom vaag? Omdat men heel anders moet leren denken als men onderhoud pleegt binnen een clusteromgeving. Er moet niet alleen rekening gehouden worden met een SAN en fysieke servers maar tevens met virtuele servers (een groep van resources).

Een virtuele server is niets anders dan een aparte groep binnen een cluster die een aantal resources bevat. Zoals een eigen IP-adres en netwerknaam zodat deze virtuele server vanaf de buitenkant van het cluster benaderd kan worden door gebruikers als zou dit een fysieke server zijn. Binnen deze groep worden er nog resources aan gemaakt van de disken en shares die bij deze virtuele server horen. Het mooie van deze virtuele server is dat de gebruikers via deze server toegang hebben tot het cluster en dit zo houden zolang er maar tenminste één node binnen dat cluster actief blijft. Dit is goed te zien in het vorige plaatje.

In dit plaatje is tevens goed te zien dat het gehele cluster een eigen IP-adres en netwerknaam heeft. Bij de clustergroep (CLU-APP) staat de Quorumdisk afgebeeld. Op deze disk staat de database van het cluster en is dus cruciaal voor de werking van dit cluster en moet dus centraal staan.

In het plaatje, ziet men bij de verbindingen, steeds de termen Preferred en Backup staan dit vraagt misschien om uitleg.
Een voorbeeld:

De gebruikers aan de linkerkant van het plaatje maken een verbinding met APP001 (dit is voor de gebruiker gewoon een fysieke server). De APP001 gebruikt als preferred server de servernode CLU-APP01, of te wel de virtuele server APP001 maakt in een normale situatie gebruik van de hardware van de CLU-APP01. De CLU-APP01 krijgt van het SAN, in een normale situatie, als eerste de beschikking over de diskresources D en E. Stel dat CLU-APP01 defect raakt (Failed) dan valt de HEARTBEAT verbinding (rood) tussen de twee clusternodes CLU-APP01 en CLU-APP02 weg en zorgt de clustergroup (CLU-APP) er voor dat vliegensvlug gebruik gemaakt gaat worden van de BACKUP paden (blauw).

De nieuwe situatie is dan dat de gebruikers links nog steeds verbinding maken met de virtuele server APP001 dus daar veranderd niets in. Wat wel veranderd is dat APP001 nu gebruik gaat maken van de hardware van CLU-APP02. Het SAN zit niet stil en wijst direct de diskresources D en E aan CLU-APP02 toe, vandaar dat binnen een cluster geen dubbele diskletters gebruikt mogen worden, want CLU-APP02 heeft nu in eens de beschikking over de disken D, E, F en G als zouden het allemaal zijn disken zijn.

Hierboven een “live” voorbeeld van een reeds gebouwde clusteromgeving.

1: Virtuele servers (Group met resources)
2: De fysieke servers (Nodes)
3: De disk resources die aan de virtuele server BCK001 zijn toegewezen.

In het bovenstaande figuur is bij de kolom “Owner” goed te zien dat de fysieke server CLU-BCK01 is toegewezen aan BCK001. Als er een failover heeft plaats gevonden zal hier CLU-BCK02 staan en BCK001 blijft dan gewoon beschikbaar.
8.1 Cluster hardware

De servers welke onderdeel uit gaan maken van de verschillende clusters (nodes) zijn HP Proliant DL380 Generation 4 servers. Deze servers worden voorzien van 36 GB 15.000 RPM (gemirrorde) SCSI schijven, waarop het besturingssysteem geplaatst wordt.

In elke machine worden twee Host Bus Adapters (HBA’s) geplaatst voor een redundante toegang tot de data, welke opgeslagen ligt in het SAN; De koppeling met het Storage Area Network (SAN) via de twee HBA’s wordt uitgevoerd als Failover.

De servers worden standaard voorzien van twee on-board Gigabit ethernet network interface cards (NIC’s). Daarnaast wordt er een dual-port Gigabit ethernet adapter per server toegevoegd. De eerste on-board adapter en de eerste interface van de dual-port adapter worden geconfigureerd als Transmit Load Balancing team. Dit maakt de netwerk verbinding redundant en biedt bovendien een hogere performance. Door het bundelen van een on-board poort met een poort van de extra netwerkkaart, welke op verschillende PCI bussen van de server worden aangesloten, zal een performance bottleneck op de PCI bus voorkomen.

De vrije onboard network interface wordt op een aparte VLAN aangesloten. Over dit Private LAN verloopt de intra-cluster heartbeat communicatie.

8.2 Cluster software

8.2.1 Cluster service account

Voor het uitvoeren van de services binnen het cluster en voor het synchroniseren van de configuratie van de afzonderlijke clusternodes wordt gebruik gemaakt van een apart login-account, het service-account SVCCLUSTER. Dit wordt door Microsoft voorgeschreven.

8.2.2 Cluster netwerk instellingen

De cluster nodes krijgen naast een verbinding naar het productienetwerk (public), tevens een onderling netwerk (private), waarover interne clustercommunicatie verloopt. Dit betreft de heartbeat tussen de cluster nodes, waarmee gecontroleerd wordt of een node nog beschikbaar is en functioneel reageert. De verbinding naar het productienetwerk wordt als alternatief pad voor de interne clustercommunicatie geconfigureerd. De volgende instellingen worden gedefinieerd met als voorbeeld het Database Cluster.

<table>
<thead>
<tr>
<th>Hostnaam</th>
<th>NIC Configuratie</th>
<th>Netwerk</th>
<th>IP Configuratie</th>
<th>Protocol en Client Bindings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLU-DBS 01</td>
<td>2x 1Gbit EC</td>
<td>Public</td>
<td>172.17.2.51</td>
<td>• Client for Microsoft Networking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• File & Printer Sharing for Microsoft Networks</td>
</tr>
<tr>
<td></td>
<td>1x 1Gbit</td>
<td>Private</td>
<td>10.1.1.51</td>
<td>• Internet Protocol (TCP/IP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Internet Protocol (TCP/IP)</td>
</tr>
</tbody>
</table>

De virtuele server (resources) worden als volgt gedefinieerd.

| CLU-DBS | n.v.t. | Public | 172.17.2.40 | n.v.t. (Cluster) |
8.2.3 Cluster Quorum

De configuratie en status van de in het cluster aanwezige resources wordt bijgehouden in de Microsoft Cluster Service (MSCS) database, welke op een aparte disk (LUN 15) wordt opgeslagen, de quorum disk. Deze disk wordt 1GB, de minimale grootte van een LUN in het SAN. De stationsletter wordt Q:.

Voor ieder van de 6 clusters wordt een Quorum disk gedefinieerd in het SAN.

8.2.4 Cluster Volumes

Voor het beschikbaar maken van o.a. gebruikersdata en e-mail worden volumes ingericht in het SAN en beschikbaar gemaakt via de verschillende clusters. De schijfletters worden uniek binnen ieder cluster.

De LUN nummers van de gezamenlijke virtuele disken worden op allebei de nodes in een cluster identiek, dit heeft geen andere reden dan beheersbaarheid. Hieronder een voorbeeld.

<table>
<thead>
<tr>
<th>Cluster Group</th>
<th>Volume naam (disk label)</th>
<th>Omschrijving</th>
<th>Grootte (GB)</th>
<th>Drive letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCK001</td>
<td>Staging EVA3000</td>
<td>Virtuele tape tbv. Staging</td>
<td>500</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>DPDatabase</td>
<td>Database Data Protector</td>
<td>20</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Quorum</td>
<td>Cluster Database</td>
<td>1</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Systemstate</td>
<td>Systemstates servers</td>
<td>30</td>
<td>S</td>
</tr>
</tbody>
</table>

8.2.5 Cluster Groups

In de clusters worden via virtuele servers resources beschikbaar gesteld aan gebruikers op het netwerk. De resources worden in logische groepen samengevoegd, de zogenaamde Cluster Groups. Afhankelijk van de configuratie worden de resources verdeeld over de nodes in de clusters. Indien één van de nodes uitvalt worden de resources verplaatst naar een andere node in het cluster, waardoor de beschikbaarheid van de resources gewaarborgd blijft.

Per cluster wordt er minimaal 1 Cluster Group aangewezen voor het beheer van het betreffende cluster en bijbehorend Quorum.

8.2.6 Cluster Groups Preferred Owners

Binnen de twee node clusters zal worden uitgegaan van minimaal één actieve Cluster Group per node. Wanneer er zich met één node problemen voordoen zorgt de cluster service er automatisch voor dat de nog functionerende node de Cluster Group van de gefaalde node overneemt. Om met het oog op optimalisatie van performance op voorhand te bepalen waar een Cluster Group naar overgeplaatst wordt, bij een failover, worden per Cluster Group de preferred owners opgegeven.

Wanneer een node niet meer functioneert worden resources volgens een vooraf ingestelde voorkeur door andere node(s) overgenomen. Is de most preferred owner van een Cluster Group weer hersteld, dan wordt een failback van de Cluster Group naar deze node uitgevoerd tussen b.v. 6:00 en 6:30 uur. Er moet hier rekening gehouden worden met het backupwindow. Wordt een onderdeel van een te herstellen cluster gebackeduped, op het moment van herstel, dan wordt deze backupactie afgebroken.

Wanneer een failback naar de most preferred owner niet gewenst is, omdat aan deze server bijvoorbeeld onderhoudswerkzaamheden plaatsvinden, dan is, door het pauzeren van de node binnen het cluster, te voorkomen dat deze node nieuwe actieve taken op zich neemt.
AANBESTEDING NGS FASE
9 Aanbesteding Hardware & Software

9.1 Inleiding

Naar aanleiding van het detailontwerp, inclusief het technisch- en functioneel ontwerp, waarbij duidelijk geworden was wat er aan hardware en software opgeleverd moest gaan worden (dit inclusief de specificaties en hoeveelheden), is de aanbesteding opgestart.

Eén van de opdrachten gesteld aan het project “GENESIS” was het feit dat de aanschaf van de benodigde hard- en software geen aanleiding mocht zijn om een Europese aanbesteding te starten, met andere woorden het totale aanbestedingsbedrag mocht niet boven de Europese aanbestedingsgrens van EUR 211.000,00 (excl. BTW) uitkomen.

Dit verzoek was mede gedaan omdat het tijdspad van dit project te kort was om een gehele Europese aanbesteding te doorlopen. De daardoor eventuele extra financiële besparing zou te niet worden gedaan doordat er aan de andere kant financiële uitgaven gedaan moeten worden. Het resultaat zou zijn dat het project niet afgerond zou zijn voor 1 april 2007. Waardoor het leasecontract zou moeten worden verlengd.

Het feit dat de huidige kostbare en tevens verouderde infrastructuur daardoor langer actief zou moeten blijven, met alle problemen van dien, heeft mede tot deze voorwaarde geleid.
Aanbesteding

9.1.1 Drempelbedragen

Per 1 december 2005 zijn in werking getreden:

De nieuwe Europese richtlijn 2004/18/EG.
Deze gecombineerde richtlijn vervangt de drie “oude” Europese richtlijnen en brengt een aantal wijzigingen met zich mee.

Het BAO (Bespuit aanbestedingsregels voor overheidsopdrachten)
Is een uitgebreide vertaling van de richtlijn in de Nederlandse wetgeving.

De nieuwe drempelbedragen voor Europese aanbestedingen.

Voor de jaren 2006 en 2007 zijn de bedragen wezenlijk lager dan voorheen.

Drempelbedragen voor de periode 2006-2008:
- Werken: 5.278.000,00 Euro
- Leveringen/Diensten: 211.000,00 Euro

De hardware (en de daarbij behorende diensten) die aangeschaft wordt valt onder de categorie Leveringen/Diensten, dus het totale bestede bedrag moet onder 211.000,00 euro blijven.

Drempelbedragen zijn in euro’s, exclusief BTW.

(Deze gegevens zijn één op één uit het Publicatieblad van de Europese Unie overgenomen)

9.2 Gemeentelijke regels

De opdrachtgever schrijft een aantal regels voor met betrekking tot het te volgen inkoopbeleid. Wanneer een aanbesteding niet boven de Europese aanbestedingsgrens komt heeft men toch te maken met drempelbedragen die de opdrachtgever zichzelf heeft opgelegd.

<table>
<thead>
<tr>
<th>Drempelbedragen in Euro’s</th>
<th>Verplichtingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20.000</td>
<td>Onderhands Enkelvoudig aanbesteden.</td>
</tr>
<tr>
<td>20.000 – 100.000</td>
<td>Onderhands Meervoudig aanbesteden.</td>
</tr>
<tr>
<td>> 100.000</td>
<td>Openbaar Meervoudig aanbesteden.</td>
</tr>
</tbody>
</table>

Als we de bovenstaande tabel in ogenschouw zouden nemen zou dat betekenen dat er een openbare aanbesteding gestart zou moeten worden waarbij ieder bedrijf, die dat zou willen, een offerte uit zou mogen brengen. Dit omdat de aanbesteding van dit project de grens van EUR 100.000,00 te boven gaat.
Er zijn een aantal overwegingen om dit niet te doen namelijk:

- De hoeveelheid offertes die een openbare aanbesteding zou opleveren en het werk dat daaruit zou voortvloeien zou een dusdanige druk op het tijdsbestemming leggen dat het einddoel niet op tijd gehaald zou kunnen worden.

- De marges op hardware erg klein zijn vooral omdat leveranciers zoals HP een zogenaamd “special Bit” (kortings percentage) kunnen toezeggen aan één bepaalde leverancier, waarbij de concurrentie al direct uit de markt geprezen wordt met betrekking tot het financiële plaatje. Dus is er erg weinig financieel gewin te halen uit de gehele aanbestedingprocedure in zijn algemeen, met betrekking tot de aanschaf van hardware.

 De winst zit meestal in de diensten, en juist die zijn er maar betrekkelijk weinig afgenomen.

 Deze kennis is expliciet niet vermeld bij de aanvraag van de offertes om zo een betere prijswaarschuwing te kunnen maken.

- Het feit dat de nieuw aan te schaffen infrastructuur gekoppeld moet worden aan de reeds actieve infrastructuur van de opdrachtgever maakt de keuze van de juiste leverancier erg belangrijk vooral omdat de continuïteit van de bestaande actieve infrastructuur gewaarborgd moet blijven.

 Op deze manier van aanbesteden kan er een goede voorselectie gemaakt worden met leveranciers die aan deze eis zouden kunnen voldoen.

Na overleg met de centrale inkoper van de opdrachtgever, waarbij de inkoper de hierboven genoemde punten onderkende, is besloten om af te wijken van de aanbestedingsregels. De aanschaf van de nieuw aan te schaffen apparatuur moet voldoen aan de eis “onderhands meervoudig aanbesteden”. Hierdoor is de mogelijkheid geschapen om een beperkt aantal (3) bekende leveranciers een offerte aanvraag te laten doen, waarbij niet alleen gekeken wordt naar de laagste prijs maar zeker ook naar de referenties van deze bedrijven. Dit om te kunnen beoordelen of deze bedrijven capabel genoeg zouden zijn voor deze opdracht en om bij eventuele problemen te kunnen adviseren. Een tweede voordeel is dat het offertetraject beperkt kan blijven tot 2 weken (gunning - aanvraag = 2 weken).

9.3 Offertetraject

9.3.1 Inkoopvoorwaarden

In de offerteaanvraag die verstuurd is naar de drie geselecteerde bedrijven (hierna bedrijf 1, 2 en 3 genoemd) wordt specifiek verwezen naar de inkoopvoorwaarden van de opdrachtgever, dit om een eventuele “Battle of Forms” voor te zijn. De reden hiervoor is dat reeds bij de aanvraag van de offerte de vermelding naar de inkoopvoorwaarden van de opdrachtgever gemaakt is en daardoor zullen deze altijd prevaleren boven die van de leverancier die meestal de Fenit voorwaarden hanteren. Er mag dan in overleg met de opdrachtgever afgeweken worden van eventuele details maar de voorwaarden van de leverancier mogen nooit als geheel de inkoopvoorwaarden van de opdrachtgever buitenspel zetten.

9.3.2 Aanvraag offerte

De drie geselecteerde leveranciers zijn schriftelijk verzocht om een offerte uit te brengen, met betrekking tot de hardware en de te leveren diensten (onderhoud/installatie e.d.) en moeten deze als aparte onderdelen specificeren (hardware, diensten onderhoud en diensten diversen). De levertijden moeten vermeld worden.

De leveranciers worden, zoals al eerder vermeld, onthouden van het feit dat het grootste gedeelte van de installatie in eigen beheer zal plaats vinden. Zoals hiervoor reeds vermeld zal een leverancier juist zijn winst uit de na gecalibreerde diensten hopen te halen en zal de hardware met minimale marge aangeboden worden waar dan direct de eerste winst te behalen valt.

Een vijftal referenties van gelijksoortige projecten is vereist.
Verder moeten de offertes uiterlijk 2 weken na het verstoren van de offerte aanvraag bij de opdrachtgever aangeboden worden. Na het verstrijken van deze termijn zullen er geen offertes meer geaccepteerd worden. De leveranciers worden in de gelegenheid gesteld om binnen deze twee weken een mondelinge uitleg te komen geven van de door dat bedrijf aangeboden offerte en om vragen te stellen betreffende deze offerte.

Vanaf het moment dat alle offertes aangeboden zijn worden deze onderworpen aan een diepgaande inspectie. Er wordt gekeken of het aangebodene daadwerkelijk conform de offerteaanvraag is, de offerte is opgesplitst in drie groepen (hardware, diensten onderhoud en diensten diversen), er een levertijd afgeven is en of is voldaan aan de eis van de referenties.

Hierna wordt er gekeken wat de financiële verschillen zijn met betrekking tot de drie aangeboden offertes en vindt er een waarde bepaling plaats van de diverse referenties. Het geheel wordt daarna aangevuld met extra bonuspunten met betrekking tot de eigen ervaringen met elk bedrijf. Het geheel wordt in een beknopte overzichtelijke tabel samengevat zodat men makkelijk tot een keuze kan komen.

De software wordt buiten deze aanbesteding gehouden en wordt gekocht bij de vaste software leverancier. De opdrachtgever heeft met deze leverancier een Microsoft D-Level contract afgesloten waardoor de software via deze weg met de meest gunstige prijs aangeschaft kan worden.

In de bijlage “Gunning & Financieel overzicht” wordt in gegaan op deze aanbesteding en is een, in opdracht van de opdrachtgever, waarheidsgetrouw maar globaal financieel overzicht van het project “GENESIS” te vinden.

9.4 Gunning

Binnen een tijdsbestek van één week wordt de betreffende leveranciers schriftelijk op de hoogte gesteld van het feit of de offerte wel of niet aan hun bedrijf gegund wordt. Daarna wordt er direct een vervolgspraak gemaakt met de leverancier waaraan de opdract gegund is. Dit om de vaart in het project te kunnen houden.
IMPLEMENTATIE & TEST FASE
10 Implementatie

10.1 Installatie hardware

In het naslag werk “GENESIS” wordt dieper ingegaan op deze materie. Hier volgt slechts een beknopte uitleg.

10.1.1 SAN

De hardware is in twee gedeeltjes geleverd. Eerst het SAN en daarna de servers. Omdat het nieuwe SAN (EVA4000) gekoppeld moest worden aan de bestaande actieve SAN (EVA3000) is dit in overleg met de opdrachtgever gebeurd onder toezicht van de leverancier. Het risico dat er iets zou kunnen gebeuren met de reeds in productie zijnde EVA3000 was anders te groot.

Zoals al eerder aangegeven zijn de twee SANs gekoppeld d.m.v. de SAN-switches. De EVA3000 beschikt over 2 switches, van elk 8 poorten (2 Gb), de EVA4000 beschikt over 2 switches, van elk 16 poorten (4 Gb). Er zijn 2 zogenaamde switch-fabrics gecreëerd. Door de switches te koppelen, d.m.v. fiberkabels. Dit is gedaan om zo een transparant en redundant geheel te krijgen.

Nadat de SANs gekoppeld waren en voorzien van alle disken zijn er twee zogenaamde zones gecreëerd op de EVA4000. Eén zone voor de Windows omgeving en één zone voor de later eventueel te creëren VMware ESX (open source) omgeving.

Zones zijn te vergelijken met een subnet in de netwerkwereld, de twee zones “zien” elkaar niet en zijn echt twee gescheiden omgevingen met hun eigen diskcapaciteit.

Omdat er voor de productieomgeving gekozen is voor Fiberdisken en voor de backup omgeving voor FATA disken was het noodzakelijk om twee verschillende diskgroups te maken. Dit schept direct duidelijkheid wanneer men zogenaamde LUN’s aan gaat maken.

Er is gebruikt gemaakt van 2 verschillende disktypes omdat de (duurdere) fiberdisken van een bewezen hoogwaardigere kwaliteit zijn dan de FATA-disken en omdat de belasting van een Fiberdisk 90% mag bedragen en bij een FATA-disk maar 20 %. Dat brengt meer zekerheid met zich mee en dat is voor een productieomgeving natuurlijk veel belangrijker dan voor een backupomgeving.
Het is belangrijk dat alle beschikbare disken direct toegewezen worden aan een diskgroep. De EVA gebruikt namelijk alle actieve disken voor redundante en snelheidsdoeleinden. Iedere disk bestaat uit 3 gedeeltes, 1 = data, 2 = vrije ruimte en 3 = paritydata. Deze laatste zorgt voor de redundantie op opslagniveau. Failt één of meerdere disk(en) dan zorgt de EVA ervoor dat de data die op de bewuste disk stond toch beschikbaar blijft door de paritydata op de andere disken te raadplegen. Dit is te vergelijken met het RAID5 principe.

De reden dat men alle disken het beste direct actief kan maken, in een diskgroup wel te verstaan, is te zien in het volgende figuur.

![Diagram van een diskgroup](image)

Dezelfde hoeveelheid data maar nu verdeeld over 15 disken

![Diagram van een diskgroup](image)

Dit is te vergelijken met het water uit een aquarium die men overgooit in een groter aquarium.

In dit voorbeeld is er één hot-sparedrive aangewezen (spare ruimte) die er voor zorgt dat wanneer een disk crashed de data van die disk via de paritydata van de andere disken weer razend snel opgebouwd wordt in de “ spare ruimte “. Voor iedere hot-sparedrive die aangewezen wordt zal er een balkje “ spare ruimte “ bij komen.
Multi-Path I/O software

Deze software voorkomt dat de betreffende server vier disken ziet i.p.v. één, omdat iedere server met vier paden verbonden is met een LUN (disk) i.v.m. redundantie. De multi-path software zorgt ervoor dat de server maar één disk ziet en zorgt voor de aansturing. Valt er b.v. één san switch uit dan zorgt multi-path ervoor dat een alternatief pad gekozen wordt.

Met deze software kunnen de gewenste paden gekozen worden:

In bovenstaand plaatje is de standaard ingesteld en dat is normaal gesproken de beste keuze. Er wordt nu gekeken welk pad het minst belast is en daar wordt de data overheen gestuurd.

Hierboven de verschillende mogelijkheden waaronder het kiezen van de mogelijkheid om load balancing uit te zetten en een preferred pad aan geven. Alle data zal dan altijd het preferred pad kiezen (b.v. de snelste switch). Wanneer deze switch uit zou vallen wordt er wel gewoon een ander pad gekozen zodat de redundantie niet in gevaar komt.

Let wel deze instelling geld dan alleen maar voor dit LUN.
Zoals uit het bovenstaande figuur af te lezen is kan de Server via vier verschillende paden zijn toegewezen diskruimte benaderen. (Streep ergens maar eens een lijntje weg)

Multipath software zorgt er voor dat de server maar één pad tegelijkertijd kan gebruiken.

MULTIPATH

10.1.2 Servers

Nu het SAN “Up and running” was, konden de servers via fiberkabels en hun interne HBA-kaarten gekoppeld worden met de SAN omgeving. Eén van de voordelen van deze omgeving is dat het niet uitmaakt aan welk EVA kabinet een server gekoppeld wordt: de server kan op beide EVA’s een LUN benaderen.

Het koppelen van een server gaat via zijn interne HBA’s. Iedere HBA heeft zijn eigen unieke adres, een zogenaamd WWN adres (World Wide Name) dit is te vergelijken met een MAC (Media Access Control) adres van een NIC.

Wanneer men dus een server gekoppeld heeft aan een SAN-switch, d.m.v. een vrije poort, zal men het SAN moeten “vertellen” welk WWN-adres bij welke server hoort. Dit doet men met behulp van de COMMAND VIEW op de managementserver van de beide SANs.
Als dit voor iedere server gebeurd is kan men LUNs (diskruimte) toewijzen aan deze servers.

Hoe het toewijzen van deze LUNs in detail in zijn werk gaat kunt u terug vinden in het naslagwerk “GENESIS” die opgeleverd is aan de opdrachtgever als een apart document en ter inzage ligt op de afstudeerzitting.

In het figuur hieronder wordt het één en ander grafisch duidelijk gemaakt.

Als men een LUN toewijst aan een Windows server dan hoeft men via het managementconsole, op deze server, bij de diskresources alleen maar even een refresh (rescan new disks) te doen en wordt de extra disk zichtbaar.

Men kan nu met deze disk omgaan als zou men direct aan de server zijn verbonden. Men kan hem zelfs partitioneren en het filesysteem formatteren met een aangepaste blocksize (daar komt de naam blockdevice vandaan)

Als achteraf meer schijfruimte nodig is dan heeft men twee opties:

• Maak een nieuwe LUN aan en presenteert deze aan de server.
• Maak een bestaande LUN groter (wanneer men een LUN groter maakt die bestemt is voor een UNIX-systeem is dit zonde van de ruimte. Unix kan namelijk zijn end pointer niet verzetten en zal de extra ruimte dan ook niet kunnen benutten).

Wanneer men voor de eerste optie kiest krijgt men er gewoon een drive bij. Heel vaak wil men dit niet vooral als er allerlei pointers naar de te kleine disk wijzen. In dit geval gebruikt men de tweede optie.
Als er nu via het managementconsole naar de disken “gekeken” wordt dan ziet men een disk die in twee gedeelten is afgebeeld.

Drive D

<table>
<thead>
<tr>
<th></th>
<th>30 Gb</th>
<th>20 Gb</th>
</tr>
</thead>
</table>

De 20 GB is erbij gekomen alleen is die niet beschikbaar voor Windows.

Men kan nu natuurlijk de disk backupen en opnieuw formatteren om de totale diskruimte van 50 GB ter beschikking te krijgen. Men kan beter het programmaatje **“DISKPART”** gebruiken om er direct een partitie van 50 GB van te maken. Dit programma start je in een **“DOS-BOX”**.

Drive D

<table>
<thead>
<tr>
<th></th>
<th>60 Gb</th>
</tr>
</thead>
</table>

Het voordeel is dat dit **“realtime”** kan gebeuren. Het is aan te raden om dit, wanneer de nood niet zo heel erg hoog is, te doen na een gelukte backup van deze disk om alle risico’s uit te sluiten. Het risico is in principe niet zo groot omdat het programma Diskpart alleen de End of Disk Pointer verzet en formeet in de toekomst verder niets. Dit voorkomt een zware I/O belasting.

Wat nog een voordeel is van het werken met een SAN is het toe kunnen wijzen van één LUN aan meerdere servers. Als er in een clusteromgeving gewerkt wordt kan men één diskresource aan twee servers toewijzen en aangeven welke server de eerste rechten (preferred) heeft op deze disk, zodat er ook maar één server tegelijkertijd toegang heeft tot die disk. Wanneer de preferred server zou falen wordt de disk direct aan de tweede server toegewezen en dat is wel zo handig binnen b.v. een cluster.

Van LUN naar DISK

Clusteromgeving

De domeincontrollers en clusternodes worden geïnstalleerd via de standaardinstallatie procedure (zie naslagwerk “GENESIS”) en getest.

10.1.3 Storage (tape)

De tweede taperobot (MSL6030) is boven de reeds bestaande taperobot geplaatst en via een scsi-kabel direct geconnect met node 2 van het backupcluster.
10.2 Bouwen Clusters

Belangrijk bij het bouwen van een cluster is de volgorde van installatie. Het komt er eigenlijk op neer dat men eerst de eerste node compleet moet installeren, inclusief het cluster zelf. Als dit allemaal werkt kan pas de tweede node worden geïnstalleerd en worden toegevoegd aan het cluster.

In het volgende figuur staat de volgorde grafisch uitgelegd.

Volgorde bouwen Cluster

De problemen die zich gaandeweg, bij het bouwen van het eerste cluster, openbaarden werden allemaal opgelost binnen de daarvoor beschikbare tijd. Door logisch nadenken en de grootste bibliotheek ter wereld: het Internet. Hierna kon het eerste cluster overgedragen worden aan de technisch applicatiebeheerders.

De zes clusters zijn allemaal identiek opgebouwd. Met de aantekening dat de Exchange- en SQL-cluster opgebouwd zijn als actief/passief cluster en de andere 4 clusters als actief/actief cluster. De reden hiervoor is al eerder besproken in deze scriptie.
10.3 Inrichting backup
De fysieke inrichting van het backup-cluster is reeds toegelicht. In deze paragraaf meer over de globale software inrichting. Eén van de eisen van de opdrachtgever is dat de dagelijkse backup-activiteiten binnen een backupwindow moeten blijven van 18.00 uur en 07.00. Dit lijkt lang maar de overheid schrijft voor dat een gemeente dagelijks een full backup moet maken van al haar data. Deze neemt alleen maar toe.

Om even een indruk te geven het volgende.
Het backupwindow van de oude situatie werd reeds overschreden en dan waren alle vier de beschikbare tapedrives, in de oude robot, echt van 17.00 uur tot 07.30 uur bezet. Mede door deze zware belasting traden er steeds meer storingen op. Een tapeunit is per slot van rekening geen statisch apparaat (zie het hiervoor reeds besproken “Shoe-Shine” effect).

In de nieuwe situatie zijn er natuurlijk een aantal zaken significant veranderd. Het SAN levert veel sneller data aan, de servers zijn veel sneller geworden en door het teamen van de netwerkkaarten wordt de data van de NODES en individuele servers nu veel sneller aangeleverd.

Het gebruik van twee backupservers, met ieder een individuele taperobot gekoppeld, maakt het geheel veel sneller. Daar komt nog bij dat de taperobots werken met LTO-2 drives in plaats van LTO-1 die in de oude omgeving werden gebruikt.

10.3.1 Wat en wanneer
Er is met de opdrachtgever bij het maken van het technisch ontwerp overleg geweest om eventueel data-replicatie toe te gaan passen. Dit was op dit moment onder andere te duur maar moet na dit project wel onder de loep genomen worden als eventuele mogelijkheid in de toekomst.

Iedere dag wordt er een full-backup gemaakt van ALLE data (mede door de reeds besproken overheid (audit) verplichting), dus ook van de servers die NIET onder het project “Genesis” vallen. De jobs die op dit moment automatisch gestart worden zijn te zien in het volgende figuur. De staging strategie is al wel geïnstalleerd en geconfigureerd maar is op dit moment nog in testfase.
11 Migratie

11.1 Inleiding

De migratie van de diverse servers vereisten voor elk van hen speciale vaardigheden. Deze vaardigheden worden beheerst door verschillende specialisten binnen het rekencentrum van de opdrachtgever.

Het volgende stroomschema is gebruikt om de migraties te stroomlijnen.

11.2 De migratie trajecten

Gedetailleerde informatie, over de verschillende migratie trajecten, kunt u vinden in het “Naslagwerk Genesis”

11.2.1 Algemene werkzaamheden

Voordat er gemigreerd kon worden moest er eerst geïnventariseerd worden welke invloed de te migreren server had op de rest van de infrastructuur. Alle verwijzingen moesten o.a. in kaart gebracht worden. Deze verwijzingen waren te vinden in b.v. de profielen, INI-bestanden, registers enz. Deze informatie moest daarna gefilterd worden op de naam van de te migreren server.
Deze informatie was nodig omdat de naamgeving van de servers (in opdracht van de opdrachtgever) allemaal gewijzigd moesten worden. Dit is een omvangrijke actie geweest die niet onderschat mag worden.

Daarna werden de benodigde speciale scripts gebouwd. Dit om na de migratie alle verwijzingen automatisch te corrigeren naar de nieuw ontstane situatie en om deze verwijzingen weer ongedaan te kunnen maken. Dit als na het testen zou blijken dat de migratie afgekeurd werd. Men had daarmee de mogelijkheid om terug te kunnen keren naar de oude situatie.

Om alle migraties in goede banen te kunnen leiden moest er voor iedere migratie een stappenplan opgeleverd worden (vinklijst). Dit stappenplan moest door twee specialisten goedgekeurd worden zodat ze elkaar zouden kunnen corrigeren of aanvullen. Door dit stappenplan werd de kans verkleind op “vergeten zaken” tijdens de migratie.

In dit stappenplan werden de gebruikers, in de vorm van de functioneel applicatiebeheerders betrokken zodat daar afspraken mee gemaakt konden worden met betrekking tot het migratietaject (testen e.d.).
12 Conclusie en aanbevelingen

12.1 Conclusie

De nieuwe infrastructuur bij de opdrachtgever is opgeleverd en is aan alle gestelde eisen, van paragraaf 3.4 en 3.5, voldaan.

De tekortkomingen ten opzichte van vorige vergelijkbare projecten, zoals het gebrek aan kennis bij de beheerorganisatie, is nu op twee manieren afgevangen. De mensen zijn opgeleid op de nieuwe omgeving voordat deze gebouwd is. Bovendien is de nieuwe omgeving gebouwd door eigen mensen. Hier is dus geen (dure) inhuur voor nodig geweest en dat is een unicum bij de opdrachtgever. Het voordeel hiervan is dat de beheerorganisatie nu wel precies weet hoe het geheel is opgebouwd en is daarmee de kwaliteit van de beheerders sterk toegenomen. Vooral dit laatste mag gezien worden als grote winst voor de opdrachtgever. Vooral met het oog op de sterk toegenomen complexiteit door o.a. gebruik te maken van, voor de opdrachtgever, nieuwe technieken.

Er mag vastgesteld worden dat het in eigen beheer houden van de regie geleid heeft tot een sterke toename van kennis en betrokkenheid van de beheerorganisatie. Er is tevens uitgebreide documentatie opgeleverd in de vorm van een fysiek (boek) en digitaal (PDF) naslagwerk. Deze kan tevens dienen als leidraad voor toekomstige projecten.

In de voorgaande vergelijkbare versie van deze opdracht, het reeds eerder genoemde project “4711”, werd er documentatie opgeleverd maar dat was een verzameling van half afgemakte documenten. Deze documenten waren niet gebundeld op één centrale plek maar over diverse (onlogische) plaatsen verdeeld. Het was voor de toenmalige beheerders dan ook bijna onmogelijk, om door middel van deze documentatie, een goed beeld te krijgen van de gehele inrichting die opgeleverd was. Er zijn zelfs pertinente vraagtekens gebleven tot aan de vervanging toe.

De beschikbaarheid van de gehele server infrastructuur is drastisch verbeterd door o.a. de toepassing van nieuw geïntroduceerde technologieën zoals “clustering”. Hierdoor wordt niet alleen de beschikbaarheid vergroot maar tevens de prestige van de opdrachtgever. Door de toevoeging van een testcluster is er nu ook de mogelijkheid geschapen om implementaties vooraf grondig, via een testplan, te testen alvorens dit daadwerkelijk in de productieomgeving uit te voeren. Ook kan deze testopstelling gebruikt worden voor demonstratie c.q. opleidingsdoeleinden.

Door de toevoeging van een tweede SAN-omgeving is er letterlijk ruimte geschapen voor verdere digitalisering binnen de organisatie van de opdrachtgever. Met deze ruimte kan flexibel omgegaan worden. De eventuele vrijgekomen diskruimte kan flexibel (tijdelijk) toegewezen worden binnen de geclusterde omgevingen.

De introductie van de techniek “staging”, binnen de backupomgeving, is er één van erg groot belang. De verwachte vergaande digitalisering (bouwtekeningen e.d.) die de komende jaren een grote vlucht zal gaan nemen, mede door het fenomeen “digitaalloket”, zal een steeds grotere diskcapaciteit gaan vragen. Deze data moet veiliggesteld worden en dat binnen een vooraf afgebakend backupwindow. De nieuwe technologie “staging” zal hierin een grote rol gaan vervullen.

De opdrachtgever wilde klaar zijn voor de toekomst en door de introductie van deze nieuwe technologieën is hij zeker de juiste weg ingeslagen. Ook al is in de wereld van de ICT de toekomst altijd relatief dichtbij.
12.2 Aanbevelingen

12.2.1 Cluster

De introductie van de technologie “clustering” heeft zijn vele voordelen maar kan ook nadelen met zich mee brengen. Het beheer wordt hierdoor complexer. Er is een andere denkwijze nodig wanneer men onderhoud pleegt op een cluster.

De procesbeschrijving zal hiervoor op de volgende punten aangepast moeten worden:

- Dubbel controleren voordat men een wijziging aanbrengt op een dergelijk systeem is een must.
- Het is van belang om bij het installeren van software op een cluster, cluster-aware of niet, dit eerst te doen op het test-cluster.
- Duidelijke STOP en GO momenten beschrijven. Het testcluster is onder andere aangeschaft om fouten te tackelen voor de daadwerkelijke implementatie (Stop/Go). En natuurlijk als leermannent. Men kan zich dan een fout permitteren en er een leermannent van maken.
- Wijzigingen, binnen deze omgeving, mogen pas door uitgevoerd worden na een geslaagde backupoperatie en buiten de reguliere kantoortijden.
- Overdracht van kennis moet gestructureerd gebeuren doormiddel van o.a. een periodiek overleg. Er moet voor gewaakt worden dat alle specifieke kennis maar bij één persoon aanwezig is.

12.2.2 Documentatie

Er is voor de beheerorganisatie een digitale versie (pdf) van het “naslag werk Genesis” beschikbaar gesteld. Deze documentatie is tijdsgebonden of te wel is aan veroudering onderhevig. Goede documentatie moet steeds “up-to-date” gehouden worden en het wordt sterk aanbevolen om voor het bijwerken c.q. aanvullen van deze documentatie één van de beheerders verantwoordelijk te stellen. Kennis is nu eenmaal vergankelijk, men kan weken met een probleem geworsteld hebben, na verloop van tijd verwatert deze kennis en kan de opgeleverde documentatie van groot belang zijn.

12.2.3 Afvoeren servers

Het afvoeren van de servers valt buiten de scope van deze opdracht, maar In paragraaf 5.9 wordt er gesproken over software die data op een disk definitief kan vernietigen.

Het softwarebedrijf BLANCCO levert deze software. Deze software zorgt ervoor dat de disken tot 7 keer worden beschreven met allemaal nullen. Het bedrijf dat deze software levert is gecertificeerd en heeft referenties over de gehele wereld zoals de CIA, FBI, RAF, KLM enz. Niet de minste als het om veiligheid gaat, men kan er vanuit gaan dat daadwerkelijk alle data van de disken verwijderd is na deze actie. Er zal natuurlijk altijd een na-controle uitgevoerd moeten worden of dit daadwerkelijk zo is.
13 Evaluatie

13.1 Doorlooptijd project

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Sub Activiteit</th>
<th>Weeknummers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventarisatie & Risico Analyse</td>
<td></td>
<td>3 4 5 6 7 8</td>
</tr>
<tr>
<td>Ontwerpen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanbesteding & gunning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanpassingen rekencentrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanpassing noodstroom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementeren & testen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN</td>
<td>Installeren</td>
<td></td>
</tr>
<tr>
<td>Applicatie Cluster</td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>Backup Cluster</td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>Domeincontrollers</td>
<td>Installeren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>File Cluster</td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>Exchange Cluster</td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>SQL Cluster</td>
<td>Bouwen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testen</td>
<td></td>
</tr>
<tr>
<td>Rapporteren & Evalueren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentatie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zoals te zien is in hierboven staande tabel is het project binnen de door de opdrachtgever gespecificeerde termijn gebleven.

13.2 Het eerste cluster

De planning moest direct aangepast worden na het plaatsen van de EVA4000. Vanuit het project DMS (Document Management System) kreeg de opdrachtgever de opdracht om in week 48 een nieuwe versie van het financiële pakket CODA te installeren. Dit kon niet uitgesteld worden omdat vanuit het project DMS per 1 januari gestart ging worden met de verwerking van gedigitaliseerde facturen. Deze gegevens moesten direct geïmporteerd worden in het nieuwe financiële systeem CODA. De nieuwe software moest dus al op het nieuwe applicatiecluster (CLU-APP) geplaatst worden. Met andere worden: dit moest het eerste opgeleverde cluster worden. De planning was echter dat het eerste logische cluster het backupcluster (CLU-BCK) zou moeten worden.

Iets totaal nieuws is al een uitdaging, laat staan als er ook nog eens grote druk op zit. Het heeft 2 weken geduurd voordat het applicatie-cluster gebouwd en getest vrij gegeven kon worden voor
productie. Het leuke is dat er veel gedocumenteerd is door Microsoft m.b.t. tot het clusteren maar ook heel veel niet, en dat is steeds weer een uitdaging geweest. Eén van de vervelende dingen is dat wanneer een clusternode geïnstalleerd wordt men een externe (gesharede) Quorum disk aan moet geven. Heel vaak (of te wel bijna altijd) is de installatie zo eigenwijs dat er na de installatie problemen ontstaan met het nieuw gebouwde cluster omdat er toch wordt verwezen naar een locale Quorumdisk.

Het probleem is dat dan bij een failover geen cluster meer beschikbaar is omdat er geen Quorumdisk meer te vinden is. Dat klopt wel want die stond lokaal op de node die het niet meer doet. De oplossing was de volgende: gooî na de installatie de Quorumdisk resource weg en maak een nieuwe Quorumdisk aan, gewoon als diskresource.

Het lijkt zo simpel maar men moet steeds drie keer nadenken voordat men een handeling verricht binnen een cluster. Gooît men een share van een fysieke disk weg zonder deze eerst uit het cluster te verwijderen dan “hangt” het gehele cluster. Dit omdat het cluster dit ziet als een “fout” en probeert dit dan d.m.v. van een zogenaamde “failover” te herstellen. Dit is niet te herstellen want in geen van de twee situaties zal het cluster de weggegoide share vinden omdat bij de failover de disken mee gaan en daar is de share weggegoid. Het cluster zal na een aantal pogingen proberen het cluster te herstellen, de gewraakte resource-share markeren als failed, en zijn taken weer gaan vervullen.

Er is steeds geprobeerd om de technisch applicatiebeheerders bij het gehele proces te betrekken om ze inzicht te geven in het clusterprincipe.

13.3 Backupwindow

Backupwindow **VOOR** Genesis..

![Backupwindow Voor Genesis](image)

Backupwindow **NA** Genesis

![Backupwindow Na Genesis](image)

Zoals in de hierboven staande overzichten blijkt is het backupwindow door het project “Genesis” behoorlijk veel kleiner geworden. Er moet in ogenschouw genomen worden dat de data die nu gebackuped wordt in volume is toegenomen omdat er twee backup cellmanagers zijn samengevoegd tot één.
Voor het project “Genesis “ bestond de backup al uit een SAN-backup (met hieraan servers gekoppeld uit het project DMS) en een backup met alle data van de overige servers waaronder de via Genesis vervangen servers.

13.4 Migratie

Om afspraken met de verschillende specialisten goed af te kunnen stemmen is er vanaf de start van het project wekelijks een projectvergadering belegd. In deze vergadering werden o.a. de vorderingen van het project besproken en werden harde afspraken gemaakt, met de diverse specialisten, over de uit te voeren werkzaamheden, taken en tijdsplan. Vooral de tijdsplan was erg belangrijk omdat de migratiewerkzaamheden voor het merendeel in de weeken hebben plaats gevonden.

13.5 Evaluatie leerdoel.

Toen ik mijn scriptie ging schrijven, drong het pas goed tot mij door dat het eigenlijk wel een erg omvangrijke en complexe opdracht geweest was. Ik had moeite om de scriptie leesbaar en overzichtelijk te houden omdat ik alle facetten wilde belichten. Vooral het feit dat ik architect, projectleider, budgethouder en uitvoerende tegelijkertijd was maakte het een omvangrijke opdracht.

Er lag ook erg veel druk op deze opdracht.

Er waren o.a. vele ogen gericht op dit project. Dit omdat dit de eerste keer was dat een zo omvangrijk project door de eigen beheersorganisatie zelfstandig werd uitgevoerd. In ogenschouw moet worden genomen dat er technieken gebruikt zijn die voor de opdrachtgever geheel nieuw waren. Wat de opdracht in zijn geheel nog complexer maakten.

Zou dit project geen succes geworden zijn dan was de opdrachtgever hoogstwaarschijnlijk geneigd geweest om bij een volgend vergelijkbaar project toch weer externe in te gaan huren. Om zo terug te vallen in een niet gewenste vorige situatie. Gelukkig is het project een succes geworden.

Ook lag er een druk op deze opdracht omdat de datum 1 april 2007 een vast gegeven was. De nieuwe architectuur moest op deze datum gerealiseerd zijn. Als dat niet het geval geweest zou zijn was men verplicht geweest om het leasecontract te verlengen. Dit met alle financiële gevolgen van dien.

Ik ben er van overtuigd dat het resultaat, mede door de positieve reacties en complimenten van de opdrachtgever, bij iedereen een goed gevoel heeft achtergelaten. Door het procesmatig werken, in teamverband, is een goed resultaat neergelegd waar iedereen zich in kan vinden. Het aansturen van collega’s, als interne projectleider, was af en toe een beetje “handschoenen” werk, vooral als een deadline niet gehaald dreigde te worden, maar heeft nimmer tot spanningen geleid. Een opdracht uitvoeren bij je werkgever geeft toch een extra druk, vooral omdat je soms in de knoop komt met je dagelijkse werk en je studie. Bij een opdracht zoals “GENESIS” worden er vele uren buiten de normale werktijden gemaakt en dat resulteerde in een aantal maanden van bijna 7 werkdagen per week. Als je daarnaast nog een volledige HBO studie volgt is het af en toe moeilijk om geconcentreerd te blijven. Maar ik heb verschrikkelijk veel geleerd en ben nu in staat om voor de eerste keer in mijn 26 jarige loopbaan (bij deze opdrachtgever) het gehele plaatje te overzien omdat ik het zelf gecreëerd heb. En daar ben ik trots op.
14 Bronvermeldingen

14.1 Internetpagina's

http://www.uitwijkinfo.nl/ Getronics Business Continuity Services
http://www.centric.nl/ Centric uitwijk faciliteiten
http://www.powerware.nl/index.asp UPS
http://www.hp.com Hewlett Packard
http://www.cisco.com Netwerkcomponenten
http://www.google.nl Zoekmachine
http://ask.jeeves.com Zoekmachine
http://www.reliablefire.com/fm200/fm200.html Blusgas
http://www.microsoft.nl Whitepapers Microsoft (o.a.)
http://www.weethet.nl/dutch/ Vraagbaak

14.2 Boeken en rapporten

Microsoft Windows 2003 (Diversen)
Data Protector Management
Data Protector Installation Guide
Publicatieblad van de Europese Unie (Richtlijnen Europese aanbestedingen)
15 Verklarende woordenlijst

<table>
<thead>
<tr>
<th>Term</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active/Active</td>
<td>Bij een active/active cluster vervullen allebei de nodes een eigen (actieve) taak. In het geval van een zogenaamde failover neemt de overgebleven node het werk van de niet meer active node over, of te wel hij moet op dat moment alle taken binnen dat cluster alleen vervullen.</td>
</tr>
<tr>
<td>Active/Passive</td>
<td>Bij een active/passive cluster is één node actief belast met de taken binnen dat cluster, de tweede node staat standby om de taken van de eerste node over te nemen bij een eventuele failover.</td>
</tr>
<tr>
<td>Benchmark</td>
<td>(in computers) de prestatietest waaraan de werking (snelheid enz.) van de computer(componenten) en/of computer programma's gemeten worden</td>
</tr>
<tr>
<td>Blockdevice</td>
<td>Een SAN is een voorbeeld van een blockdevice, bij een blockdevice bepaalt de hostserver de block indeling van de toegewezen ruimte als zou dit een fysiek gekoppelde disk zijn.</td>
</tr>
<tr>
<td>CIFS</td>
<td>Common Internet File System. Een standaard van Microsoft voor het delen van files die zich op het internet bevinden.</td>
</tr>
<tr>
<td>Cluster-aware</td>
<td>Software is zich bewust van het feit dat het in een clusteromgeving geïnstalleerd wordt en past zich daarop automatisch aan.</td>
</tr>
<tr>
<td>Cluster</td>
<td>Een verzameling gekoppelde computers die elkaars taken naadloos kunnen overnemen.</td>
</tr>
<tr>
<td>Clusternode</td>
<td>Deze naam wordt gebruikt om in een clusteromgeving aan te geven dat de server in kwestie een fysieke server is.</td>
</tr>
<tr>
<td>Corebuilder</td>
<td>MultiLayer Switchmodule</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check. Test waarin de totalen van de informatie wordt gecontroleerd om te verzekeren dat informatie foutloos is gekopieerd.</td>
</tr>
<tr>
<td>DAS</td>
<td>Direct Attached Storage. Dit staat voor een opslagmedium dat direct aangesloten is op een computersysteem en die gegevens vasthouden als de computer niet aan staat.</td>
</tr>
<tr>
<td>DFS</td>
<td>Distributed File System. Een technologie ontwikkeld door Microsoft (goed afgekeken van Unix) om d.m.v. shares, meerdere harddisks aan verschillende PC's/Servers te koppelen zodat die op het netwerk overkomen alsof het 1 enkele disk is.</td>
</tr>
<tr>
<td>DMZ</td>
<td>Demilitariseerde Zone (Een stukje "Niemandsland" tussen de buitenwereld en het interne LAN.</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro Magnetical Interference (Statische electriciteit)</td>
</tr>
<tr>
<td>Failover</td>
<td>Wanneer er een probleem is binnen een clusteromgeving zal het cluster dit tijdelijk proberen te herstellen middels een Failover.</td>
</tr>
<tr>
<td>FCS</td>
<td>Frame Check Sequence. Verwijst naar een extra checksum karakter die toegevoegd is aan een frame in combinatie met het protocol voor fout detectie en correctie. Te vergelijken met CRC.</td>
</tr>
<tr>
<td>FTE</td>
<td>Full Time Employee</td>
</tr>
<tr>
<td>HBA</td>
<td>Host Bus Adapter (Interface vergelijkbaar met een netwerkkaart maar dan voor connecties tussen fiberverbindingen onderling)</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>Het signaal tussen twee clusternodes om aan te geven of alle bij de nodes "Up and Running" zijn.</td>
</tr>
<tr>
<td>ISL</td>
<td>Inter Switch Link. Koppeling tussen meerdere SAN-switches.</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base. Een database, die veelal opgeslagen is in een RAM</td>
</tr>
</tbody>
</table>
Chip, die alle relevante informatie van het moederapparaat bevat.

NAS: Network Attached Storage. Storage (meestal disks maar tapes en memorie zijn ook mogelijk) dat direct aangesloten is op het netwerk en te benaderen is doormiddel van een netwerkshare.

NIC: Netwerk Interface Card.

NODE: Deze naam wordt gebruikt om in een clusteromgeving aan te geven dat de server in kwestie een fysieke server is.

LAN: Local Area Network (lokaal computer netwerk; een aantal computers en andere hardware die via een kabelsysteem aan elkaar verbonden zijn)

LUN: Logical Unit Number. Dit is een adres voor een individuele disk drive of te wel de gereserveerde diskruimte die toebedeeld wordt aan een direct verbonden server.

Mirroring: Deze term wordt gebruikt om aan te geven dat de data niet op 1 maar op 2 disken simultaan wordt weggeschreven (redundantie)

OUTLED: LAN aansluitpunt (stopcontact voor communicatie verbindingen).

SANS: Storage Area Network (is een opslagmedium voor een computer dat extern via een netwerk op een computer aangesloten is. De aansturing van een SAN gebeurt op blokniveau, de computer regelt dus zelf de indeling van de via SAN aangedane schijven. Dit in tegenstelling tot Network Attached Storage, waar het externe systeem al een complete bestandsstructuur aanbiedt.)

Share: De mogelijkheid gebruikers toegang te verlenen tot lokale hulpbronnen op het Netwerk cq computersysteem.

SNMP: Simple Network Management Protocol. Dit is een protocol dat werkt over een TCP/IP-netwerk voor het verkrijgen van informatie van systemen die op het TCP/IP netwerk zijn aangesloten. Met het SNMP protocol kan op een simpele methode de status van bijvoorbeeld een disk van een server opgevraagd worden of hoeveel verkeer er over een netwerk gaat. Een Management applicatie vraagt middels het SNMP protocol informatie op van apparatuur die SNMP kunnen praten en presenteert de informatie in tabel- of grafiekvorm.

Switchdomein: Resultaat van meerdere gekoppelde SAN switches.

TCO: Total Cost of Ownership (de werkelijke totale kosten).

Teamen: Het combineren van twee netwerkkaarten tot één virtueel geheel. Deze techniek wordt toegepast om de redundantie en beschikbaarheid te verhogen.

Trunk: Een trunk is een koppeling tussen twee ethernet switches.

VMWARE ESX: Virtualisatie software van de leverancier VMWARE. Deze versie gebruikt als onderliggend OS een aangepaste versie van Linux.

VPN: Virtual Private Network (beveiligde toegang tot LAN en WAN verbindingen).

UPS: Uninterruptable Power Supply (noodstroomvoorziening via batterijen).
16 Bijlage A Te vervangen hardware

De inventarisatie van de te vervangen hardware is de eerste stap die gezet moet worden, de inventarisatie wordt in dit gedeelte beperkt tot de te vervangen servers, software en de opslagapparatuur.

Servers

<table>
<thead>
<tr>
<th></th>
<th>Maan1</th>
<th>Maan2</th>
<th>Mars</th>
<th>Mercurius</th>
<th>Saturnus</th>
<th>Zon1</th>
<th>Zon2</th>
<th>Jupiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doel</td>
<td>Applicatie</td>
<td>Applicatie</td>
<td>Data</td>
<td>MSSQL</td>
<td>Backup</td>
<td>Domeinctrl</td>
<td>Domeinctrl</td>
<td>Exchange</td>
</tr>
<tr>
<td>Merk</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
<td>HP</td>
</tr>
<tr>
<td>Type</td>
<td>LH6000R</td>
<td>LH6000R</td>
<td>LH6000R</td>
<td>LH6000R</td>
<td>LH6000R</td>
<td>LH6000R</td>
<td>LH3000R</td>
<td>LH3000R</td>
</tr>
<tr>
<td>Processor</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
<td>Xeon</td>
</tr>
<tr>
<td>Aantal</td>
<td>700 Mhz</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intern Geheugen</td>
<td>1536 Mb</td>
<td>1536 Mb</td>
<td>2048 Mb</td>
<td>2048 Mb</td>
<td>1536 Mb</td>
<td>512 Mb</td>
<td>512 Mb</td>
<td>2048 Mb</td>
</tr>
<tr>
<td>Raidtype</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hardddisks</td>
<td>4</td>
<td>4</td>
<td>5/5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Capaciteit</td>
<td>36 GB</td>
<td>36 GB</td>
<td>36/72 GB</td>
<td>36 GB</td>
<td>72 GB</td>
<td>18 GB</td>
<td>18 GB</td>
<td>36 GB</td>
</tr>
<tr>
<td>Totaal Bruto</td>
<td>144 GB</td>
<td>144 GB</td>
<td>540 GB</td>
<td>180 GB</td>
<td>144 GB</td>
<td>36 GB</td>
<td>36 GB</td>
<td>180 GB</td>
</tr>
<tr>
<td>Parities</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C-gebruikt</td>
<td>4,0 GB</td>
<td>4,5 GB</td>
<td>5 GB</td>
<td>4,5 GB</td>
<td>4 GB</td>
<td>4,5 GB</td>
<td>4 GB</td>
<td>4 GB</td>
</tr>
<tr>
<td>D-gebruikt</td>
<td>89,0 GB</td>
<td>84,0 GB</td>
<td>350 GB</td>
<td>54 GB</td>
<td>33 GB</td>
<td>4 GB</td>
<td>1 GB</td>
<td>60 GB</td>
</tr>
<tr>
<td>E-gebruikt</td>
<td>20 GB</td>
<td>20 GB</td>
<td>20 GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netwerk Kaarten</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ip-adres</td>
<td>172.16.2.20</td>
<td>172.16.2.21</td>
<td>172.16.2.30</td>
<td>172.16.2.60</td>
<td>172.16.2.50</td>
<td>172.16.2.10</td>
<td>172.16.2.11</td>
<td>172.16.2.40</td>
</tr>
<tr>
<td>HBA</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dataopslag

<table>
<thead>
<tr>
<th></th>
<th>Totale capaciteit</th>
<th>Gebruikte capaciteit</th>
<th>Restant capaciteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netapps</td>
<td>512 GB</td>
<td>410 GB</td>
<td>102 GB</td>
</tr>
</tbody>
</table>

Backup

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Omschrijving</th>
<th>Verklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot</td>
<td>Naam</td>
<td>4/40</td>
</tr>
<tr>
<td>Merk</td>
<td>HP</td>
<td>Data Opslag</td>
</tr>
<tr>
<td>Doel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Fiber</td>
<td></td>
</tr>
<tr>
<td>Aantal media slots</td>
<td>8 x 4 sloten</td>
<td></td>
</tr>
<tr>
<td>Voedingen</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ip adres en subnet per NIC</td>
<td>172.16.2.152 (255.255.255.0)</td>
<td></td>
</tr>
</tbody>
</table>
Tapedrives

<table>
<thead>
<tr>
<th>Merk</th>
<th>Type</th>
<th>Capaciteit</th>
<th>Interface</th>
<th>Aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>LTO-1</td>
<td>100 tot 200 GB</td>
<td>Scsi/Fiber</td>
<td>4</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Omschrijving</th>
<th>Verklaring</th>
<th>Aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operatiesystem</td>
<td>Microsoft Windows 2000</td>
<td>Server Standard edition</td>
<td>8*</td>
</tr>
<tr>
<td>Mail</td>
<td>Microsoft Exchange 2000</td>
<td>Server Standard edition</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td>Microsoft Exchange 2003</td>
<td>Enterprise edition</td>
<td>1</td>
</tr>
<tr>
<td>Database</td>
<td>Microsoft SQL</td>
<td>Server single processor edition versie 2000</td>
<td>2*</td>
</tr>
<tr>
<td>Backupsoftware</td>
<td>HP Data Protector Cellmanager</td>
<td>Versie 5.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tapedrive licenties</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Speciale Agents</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Staging licenties 1 Terabyte</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Microsoft Cal</td>
<td>Microsoft Exchange 2003</td>
<td>Software assurance</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Microsoft 2003 Terminal</td>
<td>Software assurance</td>
<td>700</td>
</tr>
</tbody>
</table>

* = Niet bruikbaar voor het Genesisproject
17 Bijlage B Globaal Financieelverslag

Inleiding

Naar aanleiding van het aanbestedingstraject is er een gunning gedaan. In verband met privacy overwegingen worden de drie participerende bedrijven verder aangeduid als bedrijf 1, 2 en 3. Verder zal in deze bijlage een globaal financieel plaatje getoond worden van het project “Genesis”, waaruit blijkt dat aan de eis van de opdrachtgever is voldaan door onder het drempelbedrag van 211.000,00 euro te blijven zoals de Europese wet dat voorschrijft.

Beoordeling Offertes

De aangevraagde offertes zijn allen op tijd afgeleverd bij de opdrachtgever en voldeden alle drie aan de gestelde voorwaarden.
Met twee leveranciers (Bedrijf 1 en 2) zijn er in de aanbestedingstermijn nog aanvullende gesprekken geweest naar aanleiding van de uit te brengen offertes en het door de opdrachtgever goedgekeurde detailontwerp, wat als positief ervaren werd.
Een prettige bijeenkomstigheid van deze gesprekken was dat we van twee verschillende leveranciers de bevestiging kregen dat we met ons detailontwerp de juiste weg waren ingeslagen.

Zoals uit het onderstaande financieel plaatje zal blijken is er aan de eis voldaan om onder de norm van een Europese aanbesteding te blijven.

Aangeboden Hardware & Diensten

<table>
<thead>
<tr>
<th></th>
<th>Bedrijf 1</th>
<th>Bedrijf 2</th>
<th>Bedrijf 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>120.937,00*</td>
<td>134.835,00</td>
<td>139.750,00</td>
</tr>
<tr>
<td>Diensten Onderhoud</td>
<td>15.800,00</td>
<td>16.200,00</td>
<td>15.900,00</td>
</tr>
<tr>
<td>Diensten Diversen²</td>
<td>9.500,00</td>
<td>11.750,00</td>
<td>12.540,00</td>
</tr>
<tr>
<td>SubTotaal</td>
<td>146.237,00</td>
<td>162.785,00</td>
<td>168.190,00</td>
</tr>
<tr>
<td>Diensten Installatie e.d.</td>
<td>22.090,00</td>
<td>25.600,00</td>
<td>24.550,00</td>
</tr>
<tr>
<td>Op na-calculatie.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*= Special Bit van Hewlett Packard maakte hier het grote verschil.

Beoordelingstabel (globaal)

<table>
<thead>
<tr>
<th></th>
<th>Bedrijf 1</th>
<th>Bedrijf 2</th>
<th>Bedrijf 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financieel</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Referenties</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Gesprek (meedenken)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ervaring Opdrachtgever</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Totaal score</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Mede door de uitslag van de beoordelingstabel is er voor gekozen Bedrijf 1 de aanbesteding te gunnen. Bedrijf 1 heeft de meeste punten gekregen van de opdrachtgever mede omdat de bestaande SAN infrastructuur (EVA3000) waaraan de nieuwe SAN infrastructuur (EVA4000) gekoppeld moest worden was namelijk geleverd en geïnstalleerd door bedrijf 1.

Noodstroomvoorziening

<table>
<thead>
<tr>
<th>Type</th>
<th>Hardware</th>
<th>Diensten</th>
<th>Onderhoud</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerware type 9355 15 Kva</td>
<td>9.500,00</td>
<td>425,00</td>
<td>350,00</td>
<td>10.275,00</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Leverancier</th>
<th>Product</th>
<th>Aantal</th>
<th>prijs</th>
<th>Totaalbedrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>Windows 2003 Server Enterprise edition</td>
<td>10</td>
<td>1.450,00</td>
<td>14.500,00</td>
</tr>
<tr>
<td></td>
<td>Windows 2003 Server Standard edition</td>
<td>2</td>
<td>546,00</td>
<td>1.092,00</td>
</tr>
<tr>
<td></td>
<td>Windows SQL Server Enterprise Edition 2005 single processor</td>
<td>1</td>
<td>18.078,00</td>
<td>18.078,00</td>
</tr>
<tr>
<td></td>
<td>Windows 2003 Terminal Cal</td>
<td>700</td>
<td>Software assurance</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Windows Exchange Enterprise edition</td>
<td>1</td>
<td>Al Aanwezig</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Windows Exchange Cal</td>
<td>700</td>
<td>Software assurance</td>
<td>0,00</td>
</tr>
<tr>
<td>Hewlett Packard</td>
<td>Data Protector licencies Celmanager</td>
<td>0</td>
<td>Verhuis licenties</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Data Protector Open Agent Licenties Ten behoefte van de passive nodes</td>
<td>2</td>
<td>1.550,00</td>
<td>3.100,00</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>36.770,00</td>
</tr>
</tbody>
</table>
Globaal Financieel verslag “GENESIS”

In dit hoofdstuk wordt een globaal overzicht gegeven van de werkelijke financiële uitgaven met betrekking tot het gehele project “GENESIS” met betrekking tot de Hardware, Software en hiermee gerelateerde Diensten.

Globaal Financieeloverzicht van het project “GENESIS”

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Hardware</th>
<th>Diensten</th>
<th>Onderhoud</th>
<th>Software</th>
<th>Totaalbedrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA4000 en Servers</td>
<td>120.937,00</td>
<td>15.200,001</td>
<td>15.800,00</td>
<td></td>
<td>151.937,00</td>
</tr>
<tr>
<td>UPS oplossing</td>
<td>9.500,00</td>
<td>425,00</td>
<td>350,00</td>
<td>36.770,00</td>
<td>10.275,002</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td>36.770,00</td>
<td>33.670,00</td>
<td></td>
</tr>
<tr>
<td>Projectkosten alg.</td>
<td></td>
<td></td>
<td>1.100,003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwerk</td>
<td></td>
<td></td>
<td>7.500,003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>130.437,00</td>
<td>15.625,00</td>
<td>16.150,00</td>
<td>36.770,00</td>
<td>207.582,00</td>
</tr>
</tbody>
</table>

1 Diensten diversen + Diensten op nacalculatie
2 Is niet ten laste gebracht van het budget “Genesis” maar voor de volledigheid hier gemeld.
3 Zijn geen diensten/leveringen in het kader van een evt. Europese aanbesteding.

Hieronder de bedragen die mee tellen met betrekking tot een Europese aanbesteding.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Hardware</th>
<th>Diensten</th>
<th>Onderhoud</th>
<th>Software</th>
<th>Totaalbedrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA4000 en Servers</td>
<td>120.937,00</td>
<td>15.200,001</td>
<td>15.800,00</td>
<td></td>
<td>151.937,00</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td>36.770,00</td>
<td>33.670,00</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>120.937,00</td>
<td>15.200,00</td>
<td>15.800,00</td>
<td>36.770,00</td>
<td>185.607,00</td>
</tr>
<tr>
<td>Drempelbedrag</td>
<td></td>
<td></td>
<td></td>
<td>211.000,00</td>
<td></td>
</tr>
<tr>
<td>Verschil</td>
<td></td>
<td></td>
<td></td>
<td>25.393,00</td>
<td></td>
</tr>
</tbody>
</table>

Op verzoek van de opdrachtgever zijn deze gegevens waarheidsgetrouw maar globaal weergegeven.