BIM₄LCC

een koppeling van Life Cycle Costing aan BIM

Rawaz Tahir | de haagse hogeschool
Michel Molijn | hogeschool rotterdam
BIM4LCC

een koppeling van Life Cycle Costing aan BIM

versie 1.7
mei 2013

Rawaz Tahir | de haagse hogeschool
Michel Molijn | hogeschool rotterdam
Voorwoord

Voor u ligt het afstudeeronderzoek "LCC4BIM", dat is opgesteld door twee bouwkundestudenten van de Haagse hogeschool en de Hogeschool Rotterdam. In dit afstudeeronderzoek is gezocht naar een koppeling van Life Cycle Costing aan Bouw Informatie Model.

Dankbetuiging

Vervolgstudie
In dit rapport doen wij aanbevelingen voor vervolgstudie. Studenten kunnen op basis hiervan kaders schetsen voor een eigen afstudeeronderwerp binnen LCC/BIM. Met enthousiasme hopen wij dat in navolging van dit onderzoek vervolgstudie wordt gedaan naar dit thema en is na verloop van tijd de LCC4BIM-softwaretool een veelvuldig gebruikt ondersteuningsmiddel in het ontwerpproces.

Michel Molijn, Hogeschool Rotterdam
Rawaz Tahir, Haagse Hogeschool

Rotterdam, mei 2013
Inhoudsopgave

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorwoord</td>
<td>3</td>
</tr>
<tr>
<td>Inhoudsopgave</td>
<td>4</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>6</td>
</tr>
<tr>
<td>1. Inleiding</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Aanleiding</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Onderzoeksopzet</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1. Probleemstelling</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2. Doelstelling</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3. Vraagstelling</td>
<td>11</td>
</tr>
<tr>
<td>1.2.4. Onderzoekkaders</td>
<td>11</td>
</tr>
<tr>
<td>1.3. Onderzoekaanpak</td>
<td>12</td>
</tr>
<tr>
<td>2. Life Cycle Costing</td>
<td>14</td>
</tr>
<tr>
<td>2.1. Wat is Life Cycle Costing</td>
<td>14</td>
</tr>
<tr>
<td>2.1. LCC-formule</td>
<td>15</td>
</tr>
<tr>
<td>2.2. Waarom Life Cycle Costing</td>
<td>16</td>
</tr>
<tr>
<td>2.3. Invloed op de kosten</td>
<td>17</td>
</tr>
<tr>
<td>3. Bouw Informatie Model</td>
<td>18</td>
</tr>
<tr>
<td>3.1. Wat is BIM?</td>
<td>18</td>
</tr>
<tr>
<td>3.2. Waarom BIM?</td>
<td>19</td>
</tr>
<tr>
<td>3.3. Ontwerpproces</td>
<td>20</td>
</tr>
<tr>
<td>3.4. Doelstelling LCC-tool</td>
<td>21</td>
</tr>
</tbody>
</table>
4. Informatiebehoefte .. 23
4.1. Informatiestroom .. 23
4.2. Bouwkosten .. 24
4.3. Onderhoudskosten .. 26
4.4. Energiekosten .. 28
4.4.1. Verlichting .. 29
4.4.2. Verwarming .. 30

5. Conclusies en aanbevelingen ... 32
5.1. Conclusies ... 32
5.2. Aanbevelingen .. 32

Bronnenlijst ... 34

Bijlage .. 38
Samenvatting

Life Cycle Costing
Life Cycle Costing Het totaal van alle kennis over de kosten die worden gemaakt voor het stichten, exploiteren en demonteren of slopen van een gebouw of gebouwelement gedurende zijn levensduur met als doel het kunnen maken van financieel-economische afwegingen tijdens het ontwerpproces zonder de prestatie-eisen te kort te doen.

Op basis van een analyse naar de verhoudingen tussen de ontwerp- en bouwkosten en de Life Cycle Costing kan geconcludeerd worden dat een ontwerper, rekening houdend met LCC, in de meest gunstige situatie een gebouw kan ontwerpen waarvan de levensduurkosten lager is dan de ontwerp- en bouwkosten. En dat wanneer een ontwerper hier geen rekening mee houdt, het wel eens kan oplopen tot vijftig keer de ontwerp- en bouwkosten.

Door een toename aan ontwerpinformatie gedurende het ontwerpproces, neemt de keuze vrijheid van een ontwerper af naarmate het project vordert. Hier tegenover staat dat met meer zekerheid uitspraken kunnen worden gedaan over de kostenanalyses.

Vroeg in het ontwerpproces is de mogelijkheid om kosten te beïnvloeden het grootst. Voor de meeste effectiviteit van LCC-beslissingen, dient LCC in een zo vroeg mogelijk stadium plaats te vinden.

Fig. 1. Schematisering informatiestroom LCC-berekening
Bouw Informatie Model

Bouw Informatie Model (BIM) is een centraal (kennis)model van digitale informatie, over object-georiënteerde-, digitale-, driedimensionale representatie van een ontwerp, waarin verschillende disciplines integraal kunnen samenwerken binnen een procesgericht werkmethodiek, dat gericht is op ontwikkeling, gebruik en overdracht van (digitaal) informatie.

In vergelijking met het traditionele bouwproces kan, door de technische mogelijkheden van BIM, eerder worden samengewerkt waardoor bouwinformatie eerder beschikbaar is dat gekoppeld kan worden in een database/model.

Doordat LCC het meest effect heeft zo vroeg mogelijk in het ontwerpproces en dat BIM juist zorgt dat informatie eerder beschikbaar is, kan BIM een grote bijdrage leveren aan de effectiviteit van een LCC-Tool.

Koppeling

Voor het inzichtelijk maken van Life Cycle Costing zijn koppelingen gemaakt met Nederlandse en internationale standaard berekeningsmethodes, zoals de NEN en ISO voor verschillende kostenposten van een gebouw.

Door een koppeling met een BIM-model en Deskundig Informatiebeheer, worden kosteninformatie (zoals kostenkengetallen of financieel/technische gegevens) en projectgegevens gebruikt voor het berekenen van Life Cycle Costing.

![Diagram](image)

Fig. 2. Schematisering informatiestroom LCC-berekening

Projectinformatie

- **Coding**
- **Omschrijving**
 (Objectspecificatie)
- **Hoeveelheden**
- **Eenheid**

Deskundig informatiebeheer

- **Prijzen/kosten**
- **Verbruik**
- **Frequentie**

BIM4LCC: onderzoeksrapport
Doelstelling ontwerper

Een ontwerper is tijdens het ontwerpproces in de eerste instantie bezig met de vormgeving van een massa (LOD000 – LOD200), waarvan onder andere de functies en de globale ruimtebehoeftte bekend zijn. Gedurende het ontwerpproces worden er technische aspecten opgelost (LOD200 – LOD300) om de vorm tot een functionerend gebouw te vormen, aan de hand van product en materiaalkeuze.

Voor een LCC-berekening op productschaal, worden oppervlaktes van een ontwerp als input gebruikt voor het in kaart brengen van LCC voor de gekozen product(oplossingen). Financiële calculatie-informatie vanuit LOD300 is teruggekoppeld naar LOD100 en LOD200 waarin op basis van berekeningen en productinformatie een optimale oppervlakte wordt berekend.

<table>
<thead>
<tr>
<th>Modelgegevens</th>
<th>Optimale vorm</th>
<th>Optimale technische oplossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Cycle Costing functieruimte</td>
<td>Productgegevens</td>
<td>Life Cycle Costing product</td>
</tr>
<tr>
<td>Database calculatie</td>
<td>LCC-tool</td>
<td>Calculeren</td>
</tr>
</tbody>
</table>

BIM4LCC: onderzoeksrapport

![Fig. 3. Doelstellingen LCC-tool](image-url)
1. **Inleiding**

1.1. **Aanleiding**

In de bouw worden vooral beslissingen genomen op basis van bouwkosten, terwijl dit maar een topje van de ijsberg is. De daaruit voortvloeiende levensduur(kosten) worden meestal niet gezien. Terwijl de gemiddelde levensduurkosten (gebruikerskosten) van een gebouw tot vijf keer zo hoog kunnen zijn als de ontwerp- en bouwkosten.¹

Life Cycle Costing (LCC) is een berekeningsmethode voor het in kaart brengen van alle kosten, gedurende de levensduur van een ontwerp en het terugkoppelen van deze kennis, zodat ontwerpers financieel-technisch ontwerpbeslissingen kunnen nemen.

In de vorm van een berekeningssoftware zou Life Cycle Costing bijvoorbeeld kunnen bijdragen aan de bewustwording van het totale kostenplaatje. Dit kan een ontwerper ondersteunen gedurende het ontwerpproces met kostenadvies. En exploitatie gegevens over het gebouw zijn direct bekend bij oplevering ten behoeve van de beheerfase (en sloop).

Tevens zou dit een oplossing kunnen bieden aan aanbesteden, zoals Gunnen op Waarde. Niet op de laagste kostprijs, maar juist op de laagste levensduurkosten. Het zou ook een onderdeel kunnen zijn van een duurzaamheids certificaat of DBFMO-contract.

De mogelijkheden van Life Cycle Costing lopen uiteen. De kansen die op dit vakgebied liggen is een aanleiding voor dit onderzoek. Het probleem is dat een koppeling tussen Life Cycle Costing en Bouw Informatie Model nog zeer beperkt is.

1.2. **Onderzoeksopzet**

De onderzoekspdracht is verbonden aan een collectief onderzoek genaamd Barehouse BIM. Dit is een onderzoeksproject van de Hogeschool Rotterdam, waarbij studenten werken aan verschillende onderzoeken dat betrekking hebben de ontwikkeling van het Bouw Informatie Model op het gebied van duurzaamheid.

Voorgaand aan dit onderzoek is binnen de werkgroep onderzoek gedaan naar een mogelijke koppeling tussen LCC en BIM. Op basis van een LCC-berekening, is een vergelijking opgesteld voor een aantal type verlichting, waaruit blijkt dat een mogelijkheid tot het koppelen van LCC aan BIM bestaat.²

1.2.1. Probleemstelling
De probleemstelling is opgesteld aan de hand van de conclusie uit het onderzoek van Ben Moussa. Aangezien er is aangetoond dat een koppeling mogelijk is. Is het voor dit afstudeeronderzoek een kans om te onderzoeken of er op een bredere schaal een koppeling mogelijk is. Dit kan dan een breder draagvlak creëren voor het ontwikkelen van een LCC-softwaretool.

Uit onderzoek blijkt (Ben Moussa, 2012) dat een mogelijkheid tot koppelen van LCC aan BIM bestaat. *Het probleem is dat niet bekend is hoe deze koppeling op grote schaal, voor vele onderdelen in de LCC van gebouwen, kan worden gemaakt. Ook is niet bekend bij welke onderdelen van het ontwerpen in LCC de grootste voordelen zouden bestaan bij een koppeling aan BIM.*

1.2.2. Doelstelling
Het doel van dit onderzoek is het onderzoeken van een rekenmodel dat een koppeling van Life Cycle Costing aan BIM mogelijk maakt. Met als uiteindelijke visie; het ontwikkelen van een softwaretool dat het mogelijk maakt om financiële informatie van diverse elementen te vergelijken. Op basis hiervan kunnen besluiten genomen worden tijdens het ontwerpen. De softwaretool vormt dan het (praktijk)product dat voortkomt uit het (theoretische) afstudeeronderzoek.

De volgende hoofddoelstelling met betrekking tot het afstudeerproject vloeit voort uit de probleemstelling: *Inzicht geven in de technische mogelijkheden van een koppeling van Life Cycle Costing aan BIM, bij het maken van ontwerpkeuzes tijdens initiatief- en ontwerpfase, voor de grootste en meest beïnvloedbare kostenposten van een gebouw.*
1.2.3. Vraagstelling

De hoofdvraag is de centrale onderzoeksvraag en komt overeen met de probleemstelling. Deze hoofdvraag dient als het uitgangspunt van het onderzoek.

De volgende hoofdvraagstelling met betrekking tot het afstudeerproject vloeit voort uit de probleemstelling:

Hoe kunnen Life Cycle Costing berekend en gekoppeld worden aan BIM tijdens het ontwerpproces?

Om deze hoofdvraag te kunnen beantwoorden zijn de volgende deelvragen opgesteld:

1. Wat houdt LCC in en wat is de informatiestroom?
2. Wat is de informatiebehoefte van LCC en hoe kan dit worden berekend?
3. Hoe kunnen Life Cycle Costing berekend en gekoppeld worden aan BIM tijdens het ontwerpproces?

1.2.4. Onderzoekkaders

Tijdens het onderzoek wordt het onderwerp onder drie werkgebieden verdeeld, namelijk LCC, BIM en Koppeling. Binnen werkgebied LCC zal gekeken worden naar het berekenen van Life Cycle Costing, de focus zal liggen op het in kaart brengen de investering-, energie- en onderhoudskosten op productschaal. Hierbij is er gekozen voor het onderzoeken van twee producttypen, namelijk verlichting en verwarming.

Verlichting

* Dit producttype is ook gebruikt in het onderzoek van Ben Moussa. Om de onderzoeksresultaten te kunnen valideren, is in dit onderzoeken gekozen voor hetzelfde producttype.

Verwarming

* In kader van dit onderzoek, vormt verwarming een brandstofproduct. Om alle onderzochte exploitatiekosten te kunnen berekenen voor een product was het van belang om een brandstofproduct te kiezen, anders dan elektriciteit (dat al bij verlichting wordt berekend).
1.3. Onderzoekaanpak

Het onderzoek is opgebouwd uit vijf fasen. Het eerste deel vormt het deelonderzoek Life Cycle Costing dat in grote lijnen de informatiebehoeften bepaalt voor het tweede deel, waarin de berekening van de kostenposten binnen LCC uitgebreid worden onderzocht op de informatiebehoeften. Uiteindelijk wordt er gekeken in hoeverre dit gekoppeld is, of kan worden, aan Building Information Model. Dat in kader van dit onderzoek een instrument is dat werkzaamheden moet ondersteunen en daarmee niet leidend is. Hierbij zijn gebruik gemaakt van een aantal methoden en technieken om het onderzoeksproces te kunnen beheersen.

Validatie en Verificatie

<table>
<thead>
<tr>
<th>Fase 1: PvA</th>
<th>Fase 2: LCC</th>
<th>Fase 3: Informatiebehoeften</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aanleiding</td>
<td>- Wat is LCC</td>
<td>- Investeringskosten</td>
</tr>
<tr>
<td>- Probleemstelling</td>
<td>- Waarom LCC</td>
<td>- Energiekosten</td>
</tr>
<tr>
<td>- Doelstelling</td>
<td>- Wanneer LCC</td>
<td>- Onderhoud- en vervangingskosten</td>
</tr>
<tr>
<td>- Vraagstelling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase 4: Koppeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>- BIM</td>
</tr>
<tr>
<td>- Ontwerpproces</td>
</tr>
<tr>
<td>- Disconteringsvoet</td>
</tr>
<tr>
<td>- Koppeling</td>
</tr>
</tbody>
</table>

Life Cycle Costing-tool

Onderzoekresultaten vormen de input voor de LCC-tool

* De LCC-tool is uitgewerkt in Microsoft Excel.

Validatie

In de deelonderzoeken zijn onderzoekresultaten, afkomstig uit literatuur en artikelen vastgelegd. Dit noemen wij de theorie stroom. Vervolgens is in elk deelonderzoek gekeken of de gevonden resultaten gevalideerd kunnen worden met onderzoeken en scripties. (praktijk stroom) Mochten de resultaten overeenkomen dan is het aannemelijker dat de gevonden resultaten waar zijn. Deze vorm van validatie zijn in elk deelonderzoek terug te vinden.
Fase 1: Plan van Aanpak
Bij aanvang van het project is het plan van aanpak opgesteld. In dit rapport wordt een inleiding gegeven over het onderwerp, de probleemstelling en doelstellingen, opzet van het onderzoek en beoordeling van producten. Tevens is er een ‘planning’ opgesteld, die zou dienen als leidraad.

Fase 2: Life Cycle Costing
In deze fase wordt de theorie van Life Cycle Costing onderzocht. Hierbij is een lijst opgesteld met alle mogelijke kostenposten dat hieronder valt en is de informatiestroom voor de berekening ervan in kaart gebracht. Tevens is het besluitvormingsproces, tijdens het ontwerpen van een gebouw in BIM, op een rij gezet. Hierin wordt vooral gekeken naar welke besluiten worden vastgelegd in welke ontwerpfase.

Fase 3: Informatiebehoefte
Vanuit deelonderzoek LCC komen de LCC-kostenposten die berekend worden. In deze deelonderzoeken is onderzocht hoe deze kosten berekend kunnen worden, wat de informatiebehoefte is en hoe deze vormgegeven kan worden in een BIM-koppeling.

1. Investeringskosten
 In dit onderzoek wordt gekeken naar de informatiebehoefte voor het berekenen van de investeringskosten, waarbij in kader van het onderzoek de focus ligt op de bouwkosten. Hiervan wordt verder gespecificeerd waar ze uit bestaan en hoe deze berekend en vastgelegd worden gedurende het ontwerpproces.

2. Energiekosten
 Om het energieverbruik van een product in kaart te kunnen brengen, wordt de energiebehoefte in een ruimte bepaald aan de hand van (bouwfysische) berekeningsmethoden uit de NEN 7120 voor licht- en warmtebehoefte. Hiervan wordt de informatiestroom ten behoeve van de berekening in kaart gebracht.

3. Onderhoud- en vervangingskosten
 Om de onderhoudskosten van een product in kaart te kunnen brengen, wordt de beschikbare data voor verlichting en verwarming geanalyseerd op bruikbaarheid op productsschaal. Voor het berekenen van onderhoudskosten is het belangrijk dat de levensduur van het product bekend is. Dit geeft tevens aan wanneer een product vervangen dient te worden en hoe vaak dit gebeurt de ontwerplevensduur van een gebouw.

Fase 4: Koppeling
In deze fase worden alle kostenposten samengebracht in deelonderzoek Koppeling. In dit deelonderzoek wordt onderzocht wat de informatiebehoefte is van een ontwerper tijdens het ontwerpproces en op welke manier de koppeling van LCC aan BIM hier ondersteuning biedt. In dit deelonderzoek is ook de basis van BIM onderzocht en is rekening gehouden met het verdisconteren van geld over tijd.

Fase 5: Evaluatie
Afsluitend wordt een evaluatierapport opgesteld, waarin de toegepaste methoden en technieken die zijn gehanteerd gedurende het project gevalideerd worden. Tevens wordt aan de hand van een verificatie onderzoek in hoeverre het onderzochte resultaat overeen komt met wat gepland was bij aanvang. Ten behoeve van kwaliteitsverbetering worden verschillen, die tijdens deze fase naar voren komen, weer een input voor het begin van het onderzoek.

BIM4LCC: onderzoeksrapport 13
2. Life Cycle Costing

2.1. Wat is Life Cycle Costing

In literatuur, wordt nog wel eens een verschillende betekenis aan Life Cycle Costing gegeven. Hiernaast bestaan er ook termen als Whole Life Cost, Total Cost of Ownership, Life Cycle Analysis etc., dit kan voor verwarring zorgen.

In dit onderzoek wordt de term Life Cycle Costing gehanteerd. De term Whole Life Cost wordt het meest verward met Life Cycle Costing⁴. Het verschil is dat Whole Life Cost niet alleen wat zegt over het te analyseren gebouw of bouwonderdeel, maar ook de kosten en inkomsten voor, tijdens en na ingebruikname van een bedrijf of onderneming dat zich vestigt in het gebouw.⁵

Life Cycle Costing (LCC) is een methode om de levensduur, en de daarbij behorende kosten, van een product inzichtelijk te maken.⁶ De levensduur van een product, in dit geval een gebouw, begint al bij de ‘initiatie tot’ en eindigt bij de ‘sloop ervan’. Dit betekent dat ook, naast de exploitatiekosten, de investeringskosten en sloopkosten, tot de levensduurkosten behoren. Het inzichtelijk maken van de exploitatiekosten tijdens de ontwerpfase geeft ontwerpers de mogelijkheid om vroegtijdig afwegingen te maken op basis van kosten gedurende de hele levenscyclus van een gebouw.

Fig. 4. overzicht Life Cycle Cost. Bron: ISO

Samengevat is Life Cycle Costing:

“Het totaal van alle kennis over de kosten die worden gemaakt voor het stichten, exploiteren en demonteren of slopen van een gebouw of gebouwelement gedurende zijn levensduur met als doel het kunnen maken van financieel-economische afwegingen tijdens het ontwerpproces zonder de prestatie-eisen te kort te doen.”

⁵ BSI, 2008, ISO-15686-5: Buildings and constructed assets - Service-life planning, pag. 7
⁶ BSI, 2008, ISO-15686-5: Buildings and constructed assets - Service-life planning, pag. 2

BIM4LCC: onderzoeksrapport
2.1. LCC-formule
De formule voor het berekenen van de Life Cycle Costing is de som van alle kostenposten en bijbehorende onderdelen.7 (zie fig. x) Aan de hand van de Nederlandse en internationale standaardnomeningen is een lijst met kostenposten opgesteld die meegerekend kunnen worden in een LCC berekening.

Verdeling
Door analyseren van beschikbare gegevens over exploitatiekosten, blijkt dat een groot deel van de exploitatiekosten bestaan uit vaste kosten. Echter is dit in vergelijking met de andere kostenposten minder beïnvloedbaar tijdens het ontwerpproces. Onderhouds-, Energie- en Schoonmaakkosten zijn hierna de grootste kostenposten. Bedrijfs- en beheerkosten blijken de minste bijdrage te hebben.

Wegens de grootte van de kostenposten en beïnvloedbaarheid tijdens het ontwerpproces, heeft Life Cycle Costing dus het meeste baat bij de onderdelen:
1. Onderhoud
2. Energiekosten
3. Schoonmaak

BIM4LCC: onderzoeksrapport
2.2. Waarom Life Cycle Costing

In het verleden werden voor veel bouwproject op basis van de (laagste) aanschafprijs (ontwerp)beslissingen genomen. Echter zijn de bouwkosten maar een klein deel van de kosten over de complete levensduur (het topje van de ijsberg).

Een veel voorkomende verhouding voor de investeringskosten ten opzichte van de levensduur is de 1:5:200. Hiervoor staat 1, voor de ontwerp- en bouwkosten. 5 voor de levensduurkosten en 200 zijn de totale bedrijfskosten inclusief personeelskosten8.

De 1:5:200 regel is vaak terug te vinden als voorbeeldwaarde voor het onderbouwen van het nut van het bepalen van de levensduurkosten.9 Maar, het is niet een overal geldende waarde. Zo presenteert Breijer tijdens de ITTANEX BIM-seminar, d.d. 26 november 2012, een verhouding van: 0,3 voor ontwerpkosten, 1,7 voor bouwkosten en 98 voor Life Cycle Cost10.

In het onderzoek, Exposing the myth of the 1:5:200 ratio, komt een verhouding van 1:0,4:12 naar voren11.

De 1:5:200 regel is vaak terug te vinden als voorbeeldwaarde voor het onderbouwen van het nut van het bepalen van de levensduurkosten.9 Maar, het is niet een overal geldende waarde. Zo presenteert Breijer tijdens de ITTANEX BIM-seminar, d.d. 26 november 2012, een verhouding van: 0,3 voor ontwerpkosten, 1,7 voor bouwkosten en 98 voor Life Cycle Cost10.

In het onderzoek, Exposing the myth of the 1:5:200 ratio, komt een verhouding van 1:0,4:12 naar voren11.

<table>
<thead>
<tr>
<th>Bron</th>
<th>Ontwerpkosten</th>
<th>Bouwkosten</th>
<th>Exploitatiekosten</th>
<th>Bedrijfskosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Academie of Engineering</td>
<td>1</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>University of Reading</td>
<td>1</td>
<td>0.4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>National Institute of Science and Technology</td>
<td>0.3</td>
<td>0.7</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

Er blijken grote verschillen in de voorkomende verhoudingen. Geconcludeerd kan worden dat op basis van deze gegevens een ontwerper rekening houdend met LCC in de meest gunstige situatie een levensduurkosten verhouding kan bereiken dat lager is dan de ontwerp- en bouwkosten. En dat wanneer een ontwerper hier geen rekening mee houdt, het in een ergste geval wel eens kan oplopen tot 50 keer de ontwerp- en bouwkosten.

16

10 Ben Chamach,s. 26-11-2012, De BIM reis van Breijer, IttanexBim-seminar (presentatie)
* gebruikte bron in presentatie: National Institute of Science and Technology

2.3. Invloed op de kosten

Een Life Cycle Costing berekening is gericht op het zo laag mogelijk houden van de totale kosten van een geanalyseerde ontwerpbeslissing zonder de prestatie-eisen eraan tekort te doen. Verschillende ontwerpbeslissingen worden in een steeds gedetailleerdere schaal in verschillende fasen van het ontwerpproces genomen.

Dit komt door een toename aan informatie gedurende het ontwerpproces. Vroeg in het ontwerpproces ontbreekt het nog aan gedetailleerde informatie en zal men aannamen moeten doen om tot een kostenraming te kunnen komen. Gedurende het ontwerpproces neemt de zekerheid van een berekening toe. Er is dus een steeds kleiner bereik voor de onnauwkeurigheid van een berekening, waarin rekening wordt gehouden met aannamen en risicofactoren.

Bij het bepalen van de kosten, in een bepaalde fase van het bouwproces, wordt er onderscheid gemaakt in drie niveaus van nauwkeurigheid: Ramen, begroten en Calculeren. Ramen en begroten zijn op basis van kostenkengetallen, die een inschatting maken van de te verwachte kosten. Calculeren wordt gedaan op basis van meetresultaten en kostprijzen.

Vroeg in het ontwerpproces is de mogelijkheid om kosten te beïnvloeden het grootst. Het is juist hierdoor interessant om ontwerpbeslissing zo vroeg mogelijk in het ontwerpproces te berekenen, want zoals Joseph Romm al eens zei: “When just 1% of a project’s upfront costs are spent … up to 70% of its life-cycle costs may have already been committed”.

13 Jellema 10; Ontwerpen, 2005, Thieme-meulenhoff

BIM4LCC: onderzoeksrapport
3. Bouw Informatie Model

3.1. Wat is BIM?

Bouw Informatie Model is een ontwikkeling in de Bouwwereld op het gebied van automatisering. BIM begint met het 3D modelleren van bouwwerken. Hierbij wordt een virtueel bouwmodel gebruikt als een ontwerpinstrument, waarbij naast geografische informatie, ook fabriek-, bouwfysische-, mechanische-, kosten-, en andere object gerelateerde informatie kan worden vastgelegd. Het beschikbaar hebben en het kunnen delen van deze informatie geeft de betrokken partijen de mogelijkheid beter samen te werken.

Software is de technologische basis in de ontwikkeling van BIM, hieromheen ligt de manier van ontwerpen en de methodiek van het vastleggen, dat gebruikers implementeren in hun dagelijkse werkzaamheden in de branche.16

Samengevat is Bouw Informatie Model:

“Centraal (kennis)model van digitale informatie, over object-georiënteerde-, digitale-, driedimensionale representatie van een ontwerp, waarin verschillende disciplines integraal kunnen samenwerken binnen een procesgericht werkmethodiek, dat gericht is op ontwikkeling, gebruik en overdracht van (digitaal) informatie.”

Fig. 9. Full BIM. Bron: BuildingSMART

16 Deutsch, R. (2011) BIM and integrated design, Wiley,
17 National Institute of Building Sciences, 2007, National Building Information Modeling Standard
3.2. Waarom BIM?
Naast de technische mogelijkheden dat BIM-software te bieden heeft, gaat BIM bovenal over de manier van samenwerken.21 BIM is een middel om de communicatiestromen tussen verschillende partijen te structureren.

BIM biedt mogelijkheden voor verbetering door het verstrekken van een intelligent digitale structuur voor projectinformatie en uiteindelijk een middel waarmee de gegevens allemaal centraal kunnen worden gehouden (als een 'single' model). Deze omvatten betere manieren om het genereren, uitwisselen, opslaan en hergebruiken van projectinformatie die sterk de communicatie verbeteren tussen verschillende ontwerp- en bouwdisciplines in de levensduur van het bouwwerk.

BIM kan bouwinformatie koppelen in een database/model. Dit biedt een kans voor een mogelijke koppeling met Life Cycle Costing.

De grootste kosten beïnvloedende ontwerpkeuzen22 kunnen door BIM, vroeg in het ontwerpproces worden genomen.23 Dit leidt ertoe dat BIM een grote potentiële bijdrage kan leveren aan de effectiviteit van een LCC-tool.

Onderzoek naar een koppeling met BIM is zinvol, doordat er een kans bestaat dat een dergelijke LCC-tool zou kunnen functioneren binnen een BIM-omgeving en er een mogelijk groot effect bereikt kan worden.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{BIM-ontwerpproces en Kosteninvloed. Bron: IPC voor Architecten}
\end{figure}

21 Deutsch, R. (2011) BIM and Integrated design
22 N.B. (2004) Total Asset management: LCC Guideline, New South Wales Treasury
23 Spekkink, D. (2012) IPC voor architecten; Detailniveau BIM per fase
3.3. Ontwerpproces

Het bouwproces bestaat uit verschillende fasen. Het begint met een vraagspecificatie (initiatief), dit wordt in een BIM-ontwerpproces aangeduid met LOD000. Tijdens deze fase worden er besluiten genomen over het gebouw en de vormgeving (massa). Hierna volgt LOD100, waarin de invulling van ruimten in de massa worden vastgelegd. Dit loopt op naar elementen tijdens LOD200 en productoplossingen in LOD300. Vervolgens vindt tijdens LOD400 de uitvoering plaats en in LOD500 wordt het uitgevoerde/gerealiseerde bouwwerk vastgelegd, ook wel as-built genoemd.

<table>
<thead>
<tr>
<th>Fasen</th>
<th>Nadere indeling van de fasen</th>
<th>BIM LOD-fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAMMA</td>
<td>1. Initiatief</td>
<td>LOD000</td>
</tr>
<tr>
<td></td>
<td>2. Haalbaarheidsstudie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Projectdefinitie</td>
<td></td>
</tr>
<tr>
<td>ONTWERP</td>
<td>4. Structuurontwerp</td>
<td>LOD100</td>
</tr>
<tr>
<td></td>
<td>5. Voorlopig ontwerp</td>
<td>LOD200</td>
</tr>
<tr>
<td></td>
<td>6. Definitief ontwerp</td>
<td></td>
</tr>
<tr>
<td>UITWERKING</td>
<td>7. Technisch ontwerp</td>
<td>LOD300</td>
</tr>
<tr>
<td></td>
<td>8. Prijsvorming</td>
<td></td>
</tr>
<tr>
<td>REALISATIE</td>
<td>9. Werkvoorbereiding</td>
<td>LOD400</td>
</tr>
<tr>
<td></td>
<td>10. Uitvoering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Oplevering</td>
<td>LOD500</td>
</tr>
<tr>
<td>GEBRUIK</td>
<td>12. Exploitatie en verbouw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Sloop</td>
<td></td>
</tr>
</tbody>
</table>

In het verloop van de LOD-fasen is te zien dat vroeg in het ontwerpproces er voornamelijk gekeken wordt naar vormgeving, afmetingen, inhoud (volume), oriëntatie, etc. Tijdens LOD200 staan vooral de technische oplossingen centraal, waarbij objecten en systeem globaal gemodelleerd worden. Waarna in LOD300 de afmetingen vaststaan en materialen zijn gekozen.

<table>
<thead>
<tr>
<th>LOD100</th>
<th>LOD200</th>
<th>LOD300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouwmassa</td>
<td>Gebruiksfuncties</td>
<td>Materialisatie</td>
</tr>
<tr>
<td>Vormgeving van de bouwmassa die een beeld geeft van het ruimtebeslag, de hoogte, het volume, de plaatsing op het terrein en de oriëntatie, in 3D gemodelleerd of gerepresenteerd door andere gegevens.</td>
<td>Objecten zijn gemodelleerd als veralgemeneerde (functionele) systemen of samenstellingen, met globale afmetingen, hoeveelheden, vorm, locatie en oriëntatie.</td>
<td>Objecten zijn gematerialiseerd en accuraat in termen van hoeveelheden, afmetingen, vorm, locatie en oriëntatie.</td>
</tr>
<tr>
<td>Vrije vormgeving</td>
<td>Vormgeving staat vast</td>
<td>Vormgeving staat vast</td>
</tr>
<tr>
<td>Geen productoplossingen</td>
<td>Globale elementen</td>
<td>Materialen gekozen</td>
</tr>
</tbody>
</table>

Fig. 11. Fasering van het bouwproces. Bron: NEN 2634

Fig. 12. Omschrijvingen van LOD’s. Bron: IPC – BIM protocol
3.4. Doelstelling LCC-tool

Het hoofddoel van de LCC-TOOL is niet alleen het verzamelen van financiële gegevens. Bij het ontwikkelen van de Tool is gelet op ontwerpkeuzes van de ontwerper en hoe de Tool deze ontwerpkeuzes kunnen ondersteunen d.m.v. de verzamelde gegevens.

Tijdens het ontwerpproces zijn er twee doelstellingen dat een ontwerper wil bereiken met een ontwerpopgave. In de eerste instantie is dit de vormgeving van een massa (LOD000 – LOD200), waarvan onder andere de functies en de globale ruimtebehoefte bekend zijn. Gedurende het ontwerpproces worden er technische aspecten opgelost (LOD200 – LOD300) om de vorm tot een functionerend gebouw te vormen, aan de hand van product en materiaalkeuze.

Gedurende het ontwerpproces kunnen kostenanalyses uitgevoerd worden. Binnen het onderzoek is besloten om een LCC-berekening te maken op productschaal. Dit is LOD300.

LCC-berekeningen hebben de meeste baat, zo vroeg mogelijk in het ontwerpproces. Het is hierdoor dat binnen het onderzoek LOD 000 t/m 300 is opgenomen en is gezocht naar een berekening op productschaal dat eerder in het ontwerpproces afwegingen inzichtelijk maken, mogelijk maakt.

LOD 100
LCC-kosten bij verschillende afmetingen/vormgeving van het gebouw/ruimten

LOD 200
LCC-kosten bij verschillende afmetingen van ruimten voor verschillende productoplossingen die aansluiten op de ontwerpbehoefte van de architect

LOD 300
De beste LCC-oplossingen voor producten die nodig zijn in een ruimte met vastgestelde afmetingen.

Fig. 13. LCC-tool afgestemd op ontwerpkeuzes, Bron: Deelonderzoek Koppeling

24 IPC voor architecten, 2012, Detailniveau BIM per fase
Terugkoppeling
Financiële calculatie-informatie vanuit LOD300 is teruggekoppeld naar LOD100 en LOD200 waarin op basis van berekeningen en productinformatie een optimale vorm wordt berekend.

Afmetingen vanuit het BIM-model worden als input gebruikt in de Life Cycle Costing-tool, waarna de (uitgerekende) varianten worden berekend. Bij het invoeren van de afmetingen vanuit BIM is het mogelijk om een bepaald afwijkingpercentage aan te geven voor het berekenen van alternatieve afmetingen en de gevolgen daarvan op LCC.

De berekeningen zijn op basis van producten die in LOD300 gekozen kunnen worden. Hierdoor kan de ontwerper zien wat voor gevolgen afmetingkeuzes hebben, als in LOD300 de producten worden gekozen die gekoppeld zijn in de TOOL, op de levensduurkosten.

![Fig. 14. LCC LOD200 ruimtelijke afmetingen. Bron: Deelonderzoek Koppeling](image-url)
4. Informatiebehoefte

4.1. Informatiestroom

Voor Life Cycle Costing is bepaald wat de kostenposten en bijbehorende (sub)onderdelen zijn. Voor deze kostenposten is onderzocht wat de informatiebehoefte hiervan is.

Elk kostenpost kent onderling verschillen in de rekenmethoden. Voor alle kostenposten zijn koppelingen gemaakt met Nederlandse en internationale standaard berekeningsmethodes, zoals de NEN en ISO.

De LCC-Tool maakt een koppeling met BIM en deskundig informatiebeheer. Deskundig informatiebeheer is een database met kosteninformatie, (financieel/technische gegevens van een bepaald product). Deze informatie kan direct uit de praktijk komen (verkregen vanuit de leverancier of de markt waarin hij bevindt) of op basis van kostenkengetallen (schattingen vanuit ervaring of referentieprojecten).

Door een koppeling met een BIM-model is het mogelijk om de nodige projectinformatie te extraheren. In een LCC-tool met een koppeling van deze bronnen kunnen berekeningen worden uitgevoerd waarin kostenposten kunnen worden berekend.

Fig. 15. Schematisering informatiestroom LCC-berekening

In elk deelonderzoek is de benodigde informatie voor het berekenen van de kostenpost in deze methode uitgewerkt. Deze zijn toegevoegd als bijlage:

- **Bijlage 1: Bouwkosten**
- **Bijlage 2: Energiekosten; Verlichting en Verwarming**
- **Bijlage 3: Onderhoud**
4.2. Bouwkosten

Bouwkosten zijn de kosten die verband houden de realisatie van het ontwerp van een bouwwerk. Deze hebben betrekking het fysieke gebouw, dus het kopen en aanbrengen van alle materialen en onderdelen.\(^{25}\)

De investeringskosten bestaan uit de kosten voor het bouwen van een bouwwerk plus de grondkosten, inrichtingskosten, bijkomende kosten en de BTW.\(^{26}\) De investeringskosten wordt in de NEN2699 omschreven als: *alle kosten die voor de stichting van de onroerende zaak (het bouwwerk) nodig zijn*. Hieronder is een overzicht / opbouw van de investeringskosten met gemiddeld voorkomende percentages, in het kader van het onderzoek ligt de focus op de bouwkosten.

<table>
<thead>
<tr>
<th>Deelkosten</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grondkosten</td>
<td>Per BVO, als grondquote of residuele waarde</td>
</tr>
<tr>
<td>Bouwkosten</td>
<td>100%</td>
</tr>
<tr>
<td>Directe Bouwkosten</td>
<td>n.t.b.</td>
</tr>
<tr>
<td>Indirecte bouwkosten</td>
<td>20%</td>
</tr>
<tr>
<td>Bouwplaatskosten</td>
<td>10%</td>
</tr>
<tr>
<td>Algemene Kost</td>
<td>6%</td>
</tr>
<tr>
<td>Winst + risico</td>
<td>4%</td>
</tr>
</tbody>
</table>

Inrichtingskosten	Pm
Bijkomende kosten	20 – 30%
Totaal	150 – 200%
Totaal incl. BTW	170 – 220%

Fig. 16. Investeringskosten. Bron: Inleiding Bouwmanagement (Wamelink, 2009)

Raming/Begroting - LOD 000 / 100 / 200 / 300

Bij een raming of begroting wordt alleen met de kosten voor de element/product per eenheid gerekend.

<table>
<thead>
<tr>
<th>Code(s)</th>
<th>Omschrijving</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
<th>€/eenheid</th>
<th>Totaal</th>
</tr>
</thead>
</table>

Inschrijfbegroting/Calculatie - LOD 300 / 400 / 500

Bij een Calculatie wordt naast (materiaal)kosten per element/product ook de verwerkingskosten van de aannemer meegerekend. Een aannemer rekent namelijk ook de kosten voor het plaatsen (manuurkosten) en de kosten voor verwerking (materieelkosten). Als een object geheel of gedeeltelijk uitbesteed wordt, wordt er ook gerekend met de kosten voor de onderaannemer.

<table>
<thead>
<tr>
<th>code(s)</th>
<th>omschrijving</th>
<th>hoeveelheid</th>
<th>eenheid</th>
<th>€/eenheid</th>
<th>totaal</th>
<th>materiaalkosten</th>
<th>materieelkosten</th>
<th>stel-post</th>
</tr>
</thead>
</table>

Het bepalen van de totale bouwkosten is afhankelijk van de moment/fase in het ontwerpproces. Gedurende het ontwerpproces, wordt tijdens LOD000 t/m LOD300 bouwkosten berekend d.m.v. kostenkengetallen en een onzekerheidsfactor. Voor het bereik van de onzekerheid zijn de waarden van AACE opgenomen.

Vanaf LOD 300 is het mogelijk om te calculeren, omdat dan bekend is welk producten er worden toegepast. Het definiëren van producten maakt het mogelijk om een exacte (calculatie) kostenanalyse op te stellen. Door het calculeren van de kosten is er geen onzekerheid meer binnen de berekening en hoeft er dus niet meer gerekend te worden met een onzekerheidsfactor.

<table>
<thead>
<tr>
<th>Bouwproces</th>
<th>Initiatief / Haalbaarheid</th>
<th>Project-definitie</th>
<th>SO-ontwerp</th>
<th>VO-ontwerp/DO-ontwerp</th>
<th>Technisch ontwerp</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>000</td>
<td>000</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Begrotingsfase</th>
<th>Raming</th>
<th>Budget</th>
<th>Calculatie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Begrotingsklasse</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Projectdefinitie</th>
<th>0 – 2 %</th>
<th>1-5 %</th>
<th>10 – 40 %</th>
<th>30 – 70 %</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Eindgebruik</th>
<th>Haalbaarheid</th>
<th>Conceptstudie</th>
<th>Sturing</th>
<th>Sturing/aanbesteding</th>
<th>Aanbesteding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onzekerheidsbereik</td>
<td>+30 - 100%</td>
<td>+20 - +50%</td>
<td>+10 - 30%</td>
<td>+5 - 20%</td>
<td>+3 - 15%</td>
</tr>
<tr>
<td></td>
<td>-20 - 50%</td>
<td>-15 - 30%</td>
<td>-10 - 20%</td>
<td>-5 - 15%</td>
<td>-3 - 10%</td>
</tr>
</tbody>
</table>

| Inspanningsfactor | 1 | 2 - 4 | 3 - 10 | 5 - 20 | 10 - 100 |

Fig. 17. Bouwproces informatie. Bron: NEN 2699/IPC voor BIM/L. Sabel (2008), Challenges in cost estimating with Building Information Modeling\(^7\)

\(^7\) Association for the Advancement of Cost Engineering, 2005, Cost estimate classification system, pagina 2
4.3. Onderhoudskosten

De levensduur van een product geeft aan hoe lang het product meegaat. De levensduur van een product kan bepaald worden aan de hand van de referentielevensduur uit publicaties. De daadwerkelijke levensduur van algemene bouwonderdelen (niet voor installaties) zijn volgens de ISO 15686-1 te benaderen aan de hand van zeven invloedfactoren.

Aan de hand van kennis over de functionele levensduur van een product is het mogelijk de vervangingstijd in de praktijk te benaderen. Zodra deze levensduur verstreken is, wordt in de praktijk het product vervangen. De vervangingstijd wordt benaderd aan de hand van de (functionele) levensduur van een product en de (ontwerp)levensduur van een gebouw. Zodra de vervangingstijd korter is dan de ontwerplevensduur van het gebouw is er vervanging nodig.

Volgens het beslissingsmodel uit SBR gebouwenonderhoud is vervanging nodig, zodra de onderhoudskosten meer zijn dan de vervangingskosten. Dit vooraf berekenen blijkt een lastige opgave, want het moment waarop de onderhoudskosten hoger zijn geworden dan vervangingskosten is nog onbekend. Dit zal uit een later onderhoudsinspectie blijken.

![Diagram](image)

Fig. 18. Factor methode uit SBR levensduur van bouwproducten en ISO 15686

28 SBR, Gebouwenonderhoud beslissingsproces, zie Onderhoudskosten Blijage 1
Onderhoudskosten
Onderhoudskosten zijn alle kosten, die voortvloeien uit het in stand houden van een product of element. De onderhoudskosten, die voortvloeien uit de onderhoudswerkzaamheden, zijn te benaderen aan de hand van kostenkengetallen dat in verschillende publicaties en databanken zijn te vinden.

Vervangingskosten:
Het berekenen van de verwachte levensduur is omschreven in de ISO 15686-1 en houdt rekening met invloedfactoren.29 De vervangingskosten kunnen zijn de totale kosten voor het verwijderen van het oude product en het plaatsen van een nieuw product. De kosten voor vervanging kan berekend worden aan de hand van kostenkengetallen of aangenomen worden als eenmalige kosten na het eindigen van de levensduur. Afhankelijk van de beschikbare informatie over het product, kan aan de hand van de levensduur of onderhoudsinterval in combinatie met de kostenkengetallen, de vervangingskosten bepaald worden.

Calculeren: LOD300

29 SBR (2012) Levensduur van bouwproducten, ISO-15686-1,
4.4. **Energiekosten**

De energiekosten van een gebouw ontstaan door het verbruik van energiedragers als (aard)gas en elektriciteit die nodig zijn ten behoeve van energiefuncties binnen een ruimte. Energiefuncties zijn energieverbruiksposten die de energiebehoefte voor een bepaald gebruiksdoel (functie) vervullen.\(^\text{30}\) Binnen dit onderzoek zijn de productentypen verlichting en verwarming gekozen (zie onderzoekkaders).

Voor het in kaart brengen van het totale energieverbruik van een product, wordt het verbruik vanuit de energiebehoefte van een functieruimte (rekenzone) benaderd. Hiermee kan ook de directe invloed van de ruimte/omgeving waarbinnen een product functioneert op het totale energieverbruik ook mee worden gerekend. Dus hiermee wordt rekening gehouden met ontwerpkeuzes die voor andere onderdelen van het te ontwerpen gebouw zijn gemaakt\(^\text{31}\).

De energiebehoefte in een ruimte wordt bepaald aan de hand van (bouwfysische) berekeningsmethoden uit de NEN 7120 voor licht- en warmtebehoefte.

<table>
<thead>
<tr>
<th>Energiefunctie</th>
<th>Gas</th>
<th>Elektriciteit</th>
<th>Andere energiedrager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlichting</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verwarming</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Koeling</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Warm tapwater</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ventilatie</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bevochtiging</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ontvochtiging</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

![Fig. 22. Energiefuncties en gebruik. Bron: NEN 7120](image)

4.4.1. Verlichting

Het totale energieverbruik voor verlichting wordt berekend aan de hand van het verbruik en de verbruikstijd van een energiefunctie. De formules hiervoor zijn vastgelegd in de NEN 7120. Om het aantal armaturen voor een ruimte vast te stellen, staat er in de NEN 12464:2011 omschreven hoe dit berekend moet worden.

Door de lichtbehoefte binnen een ruimte te berekenen, is het mogelijke een analyse te maken, waarbij verschillende lichtproducten worden gekozen die hetzelfde effect hebben in een ruimte. Hierdoor kan een Life Cycle Costing vergelijking opgesteld worden op basis van gelijkwaardige lichtproducten. Onderstaand schema brengt de informatiestroom voor de berekening van elektriciteitsverbruik door verlichting in kaart.

Vermogen

Het verbruik is het totale vermogen van het aantal armaturen binnen een ruimte. Dit valt te berekenen door de wattage van een gekozen lamp te vermenigvuldigen met het aantal armaturen en het aantal lampen in de armatuur.\(^{32}\)

Verbruikstijd

De verbruikstijd is het aantal uren dat een lamp aanstaat. Deze wordt op basis van de dag- en nachtsituatie berekend. Om de verbruikstijd correct te bepalen worden een aantal factoren meegenomen die invloed zouden kunnen hebben op de verbruikstijd, zoals het schakelsysteem en aanwezigheidsdetectie-apparatuur. De branduren worden bepaald door de functie van een ruimte.

4.4.2. Verwarming

Het energieverbruik ten behoeve van warmte in een ruimte is afhankelijk van factoren, zoals daglichttoetreding, interne bronnen, verwarming, koeling, transmissie en ventilatie. Deze vormen samen een energiebalans van een ruimte (zie fig. 18). In dit hoofdstuk wordt de methode voor het bepalen van de warmtebehoefte van een functieruimte in kaart gebracht, om aan de hand hiervan het energieverbruik van afgiftebronnen, distributiesystemen en opweksystemen te kunnen berekenen.

Het basisprincipe van de balans is dat de hoogte van de warmtestroom naar een ruimte, hetzelfde is als de warmtestroom uit de ruimte. Warmtestroom naar een ruimte houdt zontoetreding, interne bronnen en verwarming in. En warmtestroom uit de ruimte houdt transmissie, ventilatie en koeling in.
De warmtebehoefte zoals bepaald in de analyse, kan gebruikt worden om het energieverbruik te bepalen van het afgiftesysteem, waarna dit weer als warmtebehoefte gebruikt kan worden voor de berekening van het distributiesysteem etc. om tot een totaal overzicht te krijgen van het energieverbruik.

Fig. 25. informatiebehoefte installatiecomponenten. Bron: NEN 7120
5. Conclusies en aanbevelingen

5.1. Conclusies

Hoe kunnen Life Cycle Costing berekend en gekoppeld worden aan BIM tijdens het initiatief- en ontwerpfase?

LOD300
- Life Cycle Costing kunnen, voor de onderzochte kostenposten: investeringskosten, energiekosten, onderhoudskosten en disconteringsvoet, exact berekend worden tijdens LOD300, op basis van de onderzochte producttypen verlichting en verwarming.

- Life Cycle Costing kunnen tijdens LOD300 gekoppeld worden met een BIM-modelleerprogramma, informatiedragers van kengetallen en formules uit NEN/ISO.

LOD200
- Life Cycle Costing kunnen, voor de onderzochte kostenposten: investeringskosten, energiekosten, onderhoudskosten en disconteringsvoet, worden benaderd tijdens LOD200, op basis van de onderzochte producttypen verlichting en verwarming.

- Life Cycle Costing kunnen tijdens LOD200 gekoppeld worden met informatiedragers van kengetallen en formules uit NEN/ISO en afhankelijk van de informatiebehoefte (op basis van de ontworpen afmetingen of algemene behoefte naar ontwerpafmetingen kennis) met een BIM-modelleerprogramma.

5.2. Aanbevelingen

Aanbeveling 1
Binnen dit onderzoek is onderzocht welke LCC-kostenposten er zijn. Hierna is vervolgens een selectie is opgenomen in dit onderzoek (onderzoekkaders). Hierbij zijn dus ook een aantal niet onderzocht. Deze zijn opgenomen als aanbeveling voor vervolgonderzoek:

Vastgoed en Makelaardij
- Opbrengst verhuurbaar/verkoopbaar vloeroppervlak t.o.v. LCC-Kosten (WLC)
- Verzekeringskosten
- Lokale Kosten (gemeente en dergelijke) (Locatiekeuze)

Facility Management
- Schoonmaakkosten
- Facilitairen dienst

Bouwkunde
- Sloopkosten
- Energiekosten
- *Water*
- *Koeling, ventilatie, be- en ontvochtigingssystemen.*
Aanbeveling 2
BIM maakt ontwerpinspanning eerder het ontwerproces mogelijk. Hier ligt de grootste kans voor de effectiviteit van een LCC-Tool, omdat de grootste kosten beïnvloedende ontwerpbeslissingen voor LCC vroeg in het ontwerproces worden genomen.

− Richt verder onderzoek op een mogelijke koppeling, zo vroeg mogelijk in het ontwerproces.

Aanbeveling 3
Energieproducten worden op verschillende manieren berekend in de kostenpost energie. De levensduur van energieproducten blijken bij onderhoud niet met invloedfactoren benaderd te kunnen worden, hetgeen wel blijkt voor algemene bouwproducten.

− Maak bij vervolgonderzoek onderscheid tussen algemene bouwproducten en energiegerelateerde producten.

Aanbeveling 4
De Whole Life Cost, waarin naast LCC ook gerekend wordt met het in gebruik nemen van het gebouw door een bedrijf, blijken twaalf tot vijftig keer hoger dan de ontwerp- en bouwkosten.

− Het is aan te bevelen dat er onderzocht wordt in hoeverre een koppeling mogelijk is met BIM, waarin de kosten van bedrijfsactiviteiten in een gebouw berekend kunnen worden tijdens het ontwerproces.

Aanbeveling 5
Voor het berekenen van de energiekosten op calculatieschaal blijkt veel productinformatie nodig. Daarnaast blijkt de benodigde informatie niet altijd centraal beschikbaar.

− Het is aan te bevelen dat leveranciers en fabrikanten alle productinformatie van het product vastleggen voor een mogelijke koppeling met BIM, en beschikbaar stellen, zodat een LCC-Tool makkelijker en sneller kan functioneren.
Bronnenlijst

Boeken

A
Uitgevers

B

D
Deutsch, R. (2011) BIM and Integrated design

E
Eastman (2011) BIM Handbook

F

K

M
N
N.B. (2012) FM-kostenkengetallen, Reed Business

N. B. Proces en prestatie-eisen verwarmings- en ventilatiesystemen (PGS), SBR

P

S

V

W

Publicaties

A

BIM4LCC: onderzoeksrapport
B

Ben Chamach, s. 26-11-2012, De BIM reis van Breijer, IttanexBim-seminar (presentatie)
* gebruikte bron in presentatie: National Institute of Science and Technology

D

Deneyer, A. en Deneyer, B. (2011) Evaluatie van de daglichttoetreding met computersimulaties van TC Architecten

Dukers, J. (1990) Levensduurkostenberekeningen

E

F

G

H

Huovila, P. (2012) Linking SBA metric to IFC and BIM: Sustainable Building Alliance

J

K

N

N.B. (2012) AEC (UK) BIM Standard for Autodesk Revit

N.B. (2012) BIM guide for clients, Davis Langdon

N.B. NEN 2767-1:2011 nl: Conditiemeting - Deel 1: Methodiek

S

T

Bijlage
Bijlage #1: Bouwkosten

Fig. 13. Schematisering informatiestroom LCC-berekening

Projectinformatie
- Codering
- Omschrijving (Objectspecificatie)
- Hoeveelheden
- Eenheid

Deskundig informatiebeheer

Begroting
- Prijs/ eenheid (kostenkengetal)
- Onzekerheid

Calculatie
- Materiaal
- Arbeid (materiaal)
- Materieel
- Arbeid (materieel)
- Stelpost
- Algemene Bouwplaats Kosten
- Algemene kosten
- Winst en risico

BIM → LCC berekening → **Database**

NEN 2634

Fig. 13. Schematisering informatiestroom LCC-berekening
Bijlage #2: Energiekosten

Verlichting

Projectinformatie
- Codering
- Omschrijving (Objectspecificatie)
- Hoeveelheden
- Eenheids

LCC berekening

Deskundig informatiebeheer

Totaal vermogen
- Lux-level
- Lumen
- Lichtverliesfactor
- Utilization factor
 - Roomindex
 - Lengte
 - Breedte
 - Lamphoogte
 - Werkhoogte
- Reflectiefactor
- Wattage lamp

Verbruikstijd
- Verouderingsfactor
- Branduren per jaar
- Aanwezigheidsdetectiefactor
- Schakelsysteemfactor
- Branduren per jaar
- Bezetting

BIM

Database

NEN 7120 / NEN 12464-1

Fig. 13. Schematisering informatiestroom LCC-berekening
Verwarming

Projectinformatie
- Codering
- Omschrijving (Objectspecificatie)
- Hoeveelheden
- Eenheid

BIM

LCC berekening

Database

Deskundig informatiebeheer

Warmtebehoefte ruimte
- Energiebehoefte ruimte
- Rendement afgiftesysteem

Verbruik distributiesysteem
- Brandstofverbruik afgiftesysteem
- Brandstofverbruik ventilatiesysteem
- Rendement distributiesysteem
- Intern distributierendement
- Extern distributierendement op het perceel
- Extern distributierendement buiten het perceel
- Distributieverlies

Verbruik opwekker
- Brandstofverbruik distributiesysteem
- Energiefractie
- Rendement opwekkingssysteem

NEN 7120

Fig. 13. Schematisering informatiestroom LCC-berekening
Bijlage #2: Onderhoudskosten

Bronnen levensduurdata
- Stichting Bouw Research (SBR)
- Building Cost Information Service (BCIS)
- Nederlands Instituut voor Bouwbiologie en Ecologie (NIBE)
- Leveranciers
- Onderzoekbureaus

Bronnen kostenkengetallen
- Reed Business kosteninformatie
- Reed Business FM-kostenkengetallen
- Beheerenonderhoudkosten.nl
- Archidat.nl

Projectinformatie
- Codering
- Omschrijving (Objectspecificatie)
- Hoeveelheden
- Eenheid

Deskundig informatiebeheer

Begroting
- Ontwerplevensduur
- Kostenkengetal

Vervangingskosten
- Ontwerplevensduur
- Functionele productlevensduur
- Kostenkengetal

Fig. 13. Schematisering informatiestroom LCC-berekening

LCC berekening

BIM

BIM4LCC: onderzoeksrapport

42