BALANS METEN MET HET WII BALANCE BOARD

Het ontwikkelen van een valide en betrouwbaar meetinstrument om de balans op één been en de veranderingen daarin bij sporters in beeld te brengen.

Lianne Langendam 09032355

Opleiding Bewegingstechnologie, De Haagse Hogeschool

juni 2013
BALANS METEN MET HET WII BALANCE BOARD

Het ontwikkelen van een valide en betrouwbare meetinstrument om de balans op één been en de veranderingen daarin bij sporters in beeld te brengen.

Lianne Langendam 09032355

Opleiding Bewegingstechnologie, De Haagse Hogeschool

Opdrachtgever: M. Barendrecht
1e begeleidster: A.A. Witkam
2e begeleider: H.N. Meulman

juni 2013
Voorwoord

Deze scriptie heb ik geschreven in het kader van mijn afstudeerproject voor de opleiding Bewegingstechnologie aan de Haagse Hogeschool. Het onderwerp dat ik heb gekozen voor mijn scriptie is onderzoek. Mijn interesse voor onderzoek begon tijdens mijn eerste stage bij Trainingsgezondheid en Trainingsfysiologie, onderdeel van de Nederlandse Koninklijke Landmacht, waarna ik bij mijn tweede stage onderzoek deed bij revalidatiecentrum Reade in Amsterdam. De vraag voor dit onderzoek kwam van Maarten Barendrecht, sportfysiotherapeut, docent bij Avans+ en docent bij het Nederlands Paramedisch Instituut. Dit onderzoek is gedaan om in de toekomst enkelblessures te kunnen voorspellen bij studenten van de Haagse Academie voor Lichamelijke Opvoeding.

Het schrijven van mijn scriptie heb ik ervaren als een zeer leuke en leerzame periode. Graag wil ik de personen bedanken die mij hebben geholpen en gesteund tijdens mijn afstudeerperiode. Allereerst: Maarten Barendrecht voor het voordragen van de opdracht en de goede begeleiding, mijn afstudeerbegeleiders Andrea Witkam en Hubert Meulman, ik kon altijd binnenlopen wanneer ik vragen had, Mark Schrauwen die mij tijdens het gehele proces van het programmeren heeft geholpen en natuurlijk de studenten die hebben deelgenomen aan het onderzoek. Tenslotte bedank ik nog mijn familie en vrienden die mij tijdens mijn hele studie hebben gesteund.

Veel plezier met het lezen van mijn scriptie.

Lianne Langendam,

Den Haag, juni 2013
Inhoudsopgave

Samenvatting .. 5
Verklarende woordenlijst ... 6
1 Inleiding .. 7
2 Methode .. 9
 2.1 Proefpersonen .. 9
 2.2 Design .. 9
 2.3 Meetinstrumenten ... 11
 2.3.1 Wii Balance Board ... 11
 2.3.2 Force plate .. 11
 2.4 Validiteit .. 12
 2.5 Betrouwbaarheid .. 12
 2.6 Meetprotocol ... 12
 2.7 Uitkomstmaten .. 13
 2.8 Data-analyse ... 15
 2.9 Statistische analyse ... 15
3 Resultaten ... 16
 3.1 Validiteit .. 16
 3.2 Betrouwbaarheid .. 16
 3.3 Nauwkeurigheid ... 16
 3.4 Duur en lengte metingen .. 19
4 Discussie .. 20
 4.1 Uitkomsten validiteit ... 20
 4.2 Uitkomsten betrouwbaarheid ... 20
 4.3 Uitkomstmaten nauwkeurigheid .. 20
 4.4 Uitkomsten duur en aantal herhalingen ... 21
 4.5 Beperkingen van het onderzoek ... 21
 4.6 Opvallende bevindingen .. 21
5 Conclusie ... 22
Literatuurlijst ... 23
Bijlage .. 24
Samenvatting

Het doel van dit onderzoek is een valide en betrouwbare meetinstrument ontwikkelen om de balans op één been en de veranderingen daarin bij sporters in beeld te brengen. Bij de studenten van de Haagse Academie voor Lichamelijke Opvoeding (HALO) komen veel blessures voor, waaronder enkelblessures. Wanneer studenten een enkelblessure olopen zijn zij soms voor zes maanden uitgeschakeld, waardoor zij studievertraging oplopen. Als vooraf getest wordt welke studenten een risico lopen op enkelblessures, zou er balanstraining aanbevolen kunnen worden. Door balans- en coördinatietraining verminderen het risico op enkelblessures. Er bestaan al verschillende testen die het risico op enkelblessures kunnen voorspellen. Hiervoor worden echter grote en dure meetinstrumenten gebruikt. Tijdens de testdagen van de HALO moeten veel studenten binnen een korte tijd worden getest. Hiervoor is een goedkoop, snel en ambulant meetsysteem nodig.

Een oplossing hiervoor is het Wii Balance Board (WBB). In dit onderzoek is de validiteit en de betrouwbaarheid van het WBB bepaald, door het WBB te vergelijken met een force plate (FP). Daarnaast is onderzocht hoe lang en hoe vaak er gemeten moest worden, voordat er betrouwbare uitkomstmaten uit de metingen komen.

Aan dit onderzoek hebben 25 studenten meegedaan. De metingen zijn elke keer in dezelfde volgorde uitgevoerd (rechtvoet ogen open, linkervoet ogen open, rechtvoet ogen gesloten en linkervoet ogen gesloten). Elke conditie is drie keer 30 seconden gemeten. Pearson’s correlatiecoëfficiënt is gebruikt om de validiteit tussen het WBB en de FP te bepalen. Voor de betrouwbaarheid van het WBB is het intraclass correlatiecoëfficiënt (ICC) berekend.

Uit de resultaten bleek dat de standaard deviatie in mediaal-laterale richting, de afgelegde weg, de snelheid in mediaal-laterale richting en het oppervlak van het center of pressure (COP) een uitstekende validiteit hebben (R ≥ 0,70). De betrouwbaarheid van het WBB had een ICC van 0,75 of hoger. Daarnaast is er ook nog gekeken naar de duur en het aantal herhalingen van de meting, die nodig waren om betrouwbare uitkomstmaten te krijgen (ICC ≥ 0,80). Hieruit bleek dat er slechts één meting van 30 seconden nodig was.

De conclusie die uit dit onderzoek getrokken kan worden, is dat het WBB een geschikt meetinstrument is om de balans op één been te meten en de veranderingen daarin in beeld te brengen.
Verklarende woordenlijst

<table>
<thead>
<tr>
<th>Term</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of pressure (COP)</td>
<td>Het gemiddelde drukpunt dat een voorwerp of mens uitoefent op een oppervlak</td>
</tr>
<tr>
<td>Center of gravity (COG)</td>
<td>Het gemiddelde zwaartepunt van een voorwerp of mens</td>
</tr>
<tr>
<td>G-coëfficiënt</td>
<td>G-coëfficiënt lijkt op de ICC maar aan de hand van de variantie neemt deze de weegfactor mee in de meetfout</td>
</tr>
<tr>
<td>Intraclass correlation coeffient (ICC)</td>
<td>Een getal tussen de 0 en 1 om de sterkte van het verband tussen groepen aan te geven</td>
</tr>
<tr>
<td>Minimum detectable change (MDC)</td>
<td>Het minimaal vast te stellen verschil, buiten de standaardfout, om een klinische verandering vast te stellen</td>
</tr>
<tr>
<td>Postural sway</td>
<td>Het aantal graden verplaatsing van het center of gravity ten opzichte van het de verticale lijn vanaf het center of pressure per seconde</td>
</tr>
<tr>
<td>Standard error (SE)</td>
<td>De geschatte standaardfout van een meting</td>
</tr>
</tbody>
</table>
1 Inleiding

Andere balanstesten gebruiken ook wel het center of pressure (COP) of de postural sway om enkelblessures te voorspellen. (McGuine, Greene, Best, & Leverson, 2000) Het COP is al eerder als een valide en betrouwbare maat bevonden om de balans op één been te meten. (Salavati, et al., 2009) (Palmieri, Ingersoll, Stone, & Krause, 2002) Om het COP of de postural sway te meten wordt een force plate gebruikt. Dit is echter een duur en niet ambulant systeem.

Een oplossing voor een goedkope en ambulante opzet zou het Wii Balance Board (WBB) zijn. Het WBB is al valide en betrouwbare verklaard voor het meten van balans. (Clark, Bryant, Pua, McCrory, Bennell, & Hunt, 2010) Hierbij werd echter alleen de afgelegde weg van het COP onderzocht. De standaardtests bij het WBB, de Wii Fit game, kan vooruitgang meten in balans. De standaardtests zijn echter niet valide, in tegenstelling tot een balanstest op een force plate (FP). (Wikstrom, 2012)

Naast het meetinstrument zijn de duur en het aantal herhalingen van de meting belangrijk. In eerder onderzoek is dit al bepaald voor testen op twee benen. (Doyle, Hsiao-Wecksler, Ragan, & Rosengren, 2007) Het resultaat hiervan was dat voor een acceptabele betrouwbaarheid (G-coëfficiënt ≥ 0,70) er zes keer 60 seconden lang gemeten moest worden. In het onderzoek van Le Clair (1996) is er gemeten op één been. De uitkomst hiervan was dat er één meting nodig was van 20-30 seconden om een betrouwbare uitkomstmaat te krijgen (ICC ≥ 0,80).
Het doel van dit onderzoek is: “Een valide en betrouwbaar meetinstrument te ontwikkelen om de balans op één been en de verandering daarin bij sporters in beeld te brengen.” Hierbij worden zoveel mogelijk verschillende uitkomstmaten uit de test gehaald, zodat in een vervolgonderzoek bepaald kan worden, welke uitkomstmaten of combinatie van uitkomstmaten een voorspelling kunnen doen over het risico op enkelblessures bij HALO studenten.

De hypothese die voor dit onderzoek is opgesteld luidt: “Het Wii Balance Board is een valide (R ≥ 0,70) en betrouwbaar (ICC ≥ 0,75) meetinstrument om de balans op één been te meten en de veranderingen daarin waar te nemen. Er zal echter wel een foutmarge zitten in het detecteren van het COP op het WBB ten opzichte van de force plate. Daarnaast zal er minimaal één keer 20 seconden gemeten moeten worden om betrouwbare uitkomstmaten te krijgen (ICC ≥ 0,80).”
2 Methode

2.1 Proefpersonen
Aan dit onderzoek hebben in totaal 25 studenten van De Haagse Hogeschool meegedaan, onder wie 12 mannen waren (tabel 1). Het gemiddelde aantal uren lichamelijke activiteit van de proefpersonen was vijf uur per week (tabel 2). De proefpersonen hadden voor aanvang van de meting mondeling toestemming gegeven, waarmee zij aangaven volledig op de hoogte te zijn van de aard en het doel van het onderzoek. Proefpersonen met rug- of onderste extremiteitklachten, of die medicatie gebruiken (waardoor de balans wordt beïnvloed) of die de afgelopen zes maanden een blessure hebben opgelopen, zijn uitgesloten van het onderzoek. Alle metingen vonden binnen twee weken plaats op De Haagse Hogeschool.

Tabel 1. Gegevens van de proefpersonen

<table>
<thead>
<tr>
<th></th>
<th>Aantal (N)</th>
<th>Gem. leeftijd (j)</th>
<th>SD leeftijd</th>
<th>Gem. lengte (m)</th>
<th>SD lengte</th>
<th>Gem. gewicht (kg)</th>
<th>SD gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannen</td>
<td>12</td>
<td>21,3</td>
<td>1,37</td>
<td>1,87</td>
<td>0,10</td>
<td>82,5</td>
<td>6,67</td>
</tr>
<tr>
<td>Vrouwen</td>
<td>13</td>
<td>21,4</td>
<td>1,45</td>
<td>1,67</td>
<td>0,06</td>
<td>62,2</td>
<td>7,43</td>
</tr>
<tr>
<td>Totaal</td>
<td>25</td>
<td>21,4</td>
<td>1,38</td>
<td>1,76</td>
<td>0,13</td>
<td>71,9</td>
<td>12,74</td>
</tr>
</tbody>
</table>

Tabel 2. Het aantal uren sporten per week van de proefpersonen en het voorkeursbeen

<table>
<thead>
<tr>
<th></th>
<th>Gem. lichamelijke activiteit (u)</th>
<th>SD lichamelijke activiteit</th>
<th>Voorkeursbeen rechts</th>
<th>Voorkeursbeen links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannen</td>
<td>5,3</td>
<td>2,30</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Vrouwen</td>
<td>4,8</td>
<td>4,45</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Totaal</td>
<td>5,0</td>
<td>3,52</td>
<td>17</td>
<td>8</td>
</tr>
</tbody>
</table>

2.2 Design
Tijdens de metingen werd het WBB op de force plate geplaatst (afbeelding 1). Om te voorkomen dat het WBB tijdens de meting ging schuiven ten opzichte van de FP is er een plaat tussen gelegd. Op beide kanten van de plaat zijn uitstekende blokjes gelijmd, die precies om de FP en het WBB heen passen (afbeelding 2).
Voor de metingen met ogen open, is er een scherm geplaatst met een stip die op ooghoogte werd gehangen (afbeelding 3). Om in later onderzoek te kijken of iemand met een enkelblessure meer naar binnen of naar buiten leunt op de voet, werd er een mal geplaatst over het WBB (afbeelding 4). De proefpersoon moest de binnenkant van de voet tegen de rand plaatsen, waarna een lat tegen het breedste gedeelte van de voet werd gelegd en de breedtemaat van de voet werd genoteerd. Nadat de proefpersoon goed stond, werd de mal weer weggehaald, om het steunen tegen de randen te voorkomen.
2.3 Meetinstrumenten

2.3.1 Wii Balance Board
Het Wii Balance Board (WBB) (Nintendo, Kyoto, Japan; afbeelding 5) is een onderdeel van de game WiiFit. Het WBB bevat vier ingebouwde drukssensoren in de vier hoeken. De sensoren meten de krachtsverdeling en de resulterende verplaatsing van het COP. Het WBB heeft een bruikbaar oppervlak van 450 mm x 265 mm en is geplaatst op een FP.

Tijdens de meting werden de data van het WBB doorgestuurd naar de computer (door middel van bluetooth) en via op maat geschreven software (Microsoft visual studio express 2012) werden de data opgeslagen in een tekstbestand. Het WBB werd voor iedere meting gekalibreerd, door de zero off-set te gebruiken.

Afbeelding 5. Wii Balance Board

2.3.2 Force plate
Een force plate (FP) (AMTI type OR6-GT-1000, Watertown, U.S.A.; afbeelding 6) werd gebruikt om het WBB op validiteit te testen. Deze registreert de grondreactiekrachten en momenten door middel van rekstrookjes. De FP heeft een bruikbaar oppervlak van 508 x 464 x 83 mm. Het WBB paste niet op de FP, daarom is er een plaat tussen het WBB en de FP geplaatst (afbeelding 1). Om ervoor te zorgen dat het WBB iedere keer op precies dezelfde plaats stond, zijn er opstaande randen op de plaat gemaakt, zodat de plaat precies over de FP heen paste en het WBB weer precies op de plaat paste. De FP is voor iedere meting gekalibreerd volgens de aanbevelingen van de fabrikant. De uitkomstmaten van de metingen van de FP werden verwerkt in op maat geschreven software (Matlab R2007b).

Afbeelding 6. Force Plate
2.4 Validiteit
De validiteit van het WBB is bepaald door deze te vergelijken met een FP. Bij eerder onderzoek naar balans is de FP al gebruikt als valide en betrouwbaar meetinstrument. (Clark, Bryant, Pua, McCrory, Bennell, & Hunt, 2010) Bij dat onderzoek is echter alleen de afgelegde weg van het COP onderzocht. Bij dit onderzoek zijn er zes verschillende uitkomstmaten onderzocht: het gemiddelde COP, de standaardafwijking van het COP, de grootste uitslag van het COP in mediaal-laterale richting, de afgelegde weg van het COP, de snelheid van het COP en het oppervlak waarbinnen het COP beweegt. Het verschil met het onderzoek van Clark (2010) is, dat bij dit onderzoek het WBB op de FP is geplaatst, zodat de data van het WBB en de FP van één meting gebruikt konden worden. Bij het onderzoek van Clark (2010) is er eerst gemeten op het WBB en daarna op de FP. De uitkomsten van dit onderzoek zijn een maat van onnauwkeurigheid van het WBB ten opzichte van de FP.

2.5 Betrouwbaarheid
De betrouwbaarheid van de uitkomstmaten hangt af van de duur van de meting, het aantal herhalingen en de rust tussen de metingen. (Doyle, Hsiao-Wecksler, Ragan, & Rosengren, 2007) (Le Clair & Riach, 1996) Het verschilt per uitkomstmaat hoe vaak en hoelang er gemeten moet worden. De uitkomstmaat van dit onderzoek is de optimale combinatie tussen duur en aantal herhalingen per uitkomstmaat.

Andere factoren die invloed kunnen hebben op de betrouwbaarheid zijn de plaatsing van de voet en de plaatsing van de handen. Wanneer de armen naast het lichaam worden gehouden kan gecompenseerd worden met de armen. Om dit te voorkomen moeten de handen zo dicht mogelijk bij het lichaam gehouden worden en mag men de handen niet bewegen. Om deze reden is voor dit onderzoek gekozen om de handen gekruist op de schouders te plaatsen. (Wang, Chen, Shiang, Jan, & Lin, 2006)

Het WBB heeft een rechthoekige vorm. Wanneer een voet met maat 41 of groter in de breedterichting van het WBB wordt geplaatst past deze er niet volledig op. Om deze reden is ervoor gekozen om de voet in de lengterichting van het WBB te plaatsen. Er is een mal vervaardigd zodat de voet iedere keer op dezelfde plek op het WBB stond. De mal is getest op betrouwbaarheid, zoals hierna beschreven wordt in het meetprotocol.

Het WBB moest elke meting precies op dezelfde plek staan ten opzichte van de FP. Daarvoor is een plaat vervaardigd die precies over de FP heen past en waar het WBB weer precies in past. De plaat is getest op betrouwbaarheid. Hierin is ook de betrouwbaarheid van de mal meegenomen, zoals hierna beschreven wordt in het meetprotocol.

2.6 Meetprotocol
Eerst is er onderzocht wat de betrouwbaarheid van de mal is. Dit is gedaan door verschillende gewichten op het WBB tegen de mal aan te plaatsen. Tussen de metingen door is de mal helemaal van het WBB afgehaald en er weer op gelegd. Deze meting is in totaal 30 keer uitgevoerd, met gewichten van 5, 10 en 15 kilogram. De uitkomst van deze meting is een foutmarge van de mal.

Nadat vastgesteld was wat de betrouwbaarheid van de mal is, werd de betrouwbaarheid van de plaat tussen het WBB en de FP onderzocht. Als de plaat verschoof ten opzichte van de FP of het WBB stond de voet niet elke keer op precies dezelfde plek op de FP. Daarom is hetzelfde onderzoek met de gewichten uitgevoerd, maar met de plaat en de FP eronder. De uitkomst van deze meting is een foutmarge van de mal plus de plaat.
De methode om de duur en het aantal herhalingen van de meting te bepalen is conform het onderzoek van Doyle 2007, dat is uitgevoerd op een FP. (Doyle, Hsiao-Weckslr, Ragan, & Rosengren, 2007) In dit onderzoek wordt de Intraclass correlation coefficient (ICC) (een getal tussen de 0 en 1 om de sterkte van het verband tussen groepen aan te geven) bepaald in plaats van de G-coëfficiënt (de G-coëfficiënt lijkt op de ICC maar aan de hand van de variatie neemt deze de weegfactor mee in de meetfout). Voorafgaand aan iedere meting werden geslacht, leeftijd, lengte, gewicht, voorkeursbeen en voetbreedte genoteerd. De voetbreedtes van de proefpersoon zijn drie keer opgemeten, hiervan zijn de gemiddelden genoteerd. Het WBB werd op de FP geplaatst met een plaat ertussen. De mal werd over het WBB heen gelegd zodat de voet op de goede plek stond, waarna de mal weer werd weggehaald.

Alle proefpersonen zijn gedurende 30 seconden gemeten op zowel de rechtervoet als de linkervoet en met ogen open en ogen gesloten. Bij de meting met ogen open moest de proefpersoon naar een stip op de muur kijken op ooghoogte. De test werd op blote voeten uitgevoerd. Het opgetrokken been was licht gebogen en mocht het standbeen niet raken. De handen waren gekruist op de schouders geplaatst.

De meting begon met twee oefenmetingen van 20-30 seconden op zowel de rechtervoet als de linkervoet en met ogen open en ogen gesloten. Elke meting is drie keer uitgevoerd, te beginnen met: rechtervoet ogen open, linkervoet ogen open, rechtervoet ogen gesloten en tot slot de linkervoet ogen gesloten. De rust tussen de metingen was 30 seconden. Wanneer het een proefpersoon niet lukte om 30 seconden in balans te blijven (voet verplaatsen op het WBB, handen los te laten van de schouders, bij de meting met ogen gesloten de ogen te openen of met het opgetrokken been het standbeen of de grond te raken) werd de meting gestopt. In dat geval werd het aantal seconden gebruikt dat iemand in balans kon blijven.

Voor de dataverwerking is de eerste 10, 20 en de gehele 30 seconden van iedere meting gebruikt. Deze zijn gecombineerd met één tot en met drie herhalingen. De uitkomst van dit onderzoek is de validiteit en betrouwbaarheid van het WBB ten opzichte van de FP. Daarnaast is een andere uitkomstmaat de gunstigste combinatie van de duur en het aantal herhalingen van de meting.

2.7 Uitkomstmaten

De uitkomstmaten die voor zowel de validiteit als de betrouwbaarheid zijn gebruikt zijn hier beschreven. Voor het onderzoek naar de duur en het aantal herhalingen van de meting zijn ook deze uitkomstmaten gebruikt.

Gemiddelde positie center of pressure
De gemiddelde positie van het COP in mm (ten opzichte van de voet) is berekend per been en verdeeld in ogen open en ogen gesloten.

Standaardafwijking van het center of pressure
De standaardafwijking van het COP in mm is berekend met behulp van de gemiddelde positie van het COP. Deze uitkomstmaat werd opgesplitst in anteriorposteriore (AP) en in mediaal-laterale (ML) richting. De formules die hiervoor zijn gebruikt zijn conform het onderzoek van Doyle (2007). De x_{AP} en de x_{ML} zijn de afstanden in mm vanaf het midden van het WBB of de FP tot het COP. De x_{AP} en de x_{ML} zijn de afstanden in mm vanaf het midden van het WBB of de FP tot het gemiddelde COP van één meting. De waarde N geeft het totale aantal datapunten van het COP aan.
Maximale uitslag van het center of pressure
De grootste uitslag van het COP in mm naar mediaal en lateraal zijn gebruikt als maximale uitslag.

Afgelegde weg van het center of pressure
De afgelegde weg van het COP is berekend in mm.

\[
\text{Afgelegde weg} = \sum_{n=1}^{N-1} \sqrt{(x_{AP(n+1)} - x_{AP(n)})^2 + (x_{ML(n+1)} - x_{ML(n)})^2}
\]

Snelheid van het center of pressure
De gemiddelde snelheid van het COP in mm/s is in zowel anteriorposteriore- als mediaal-laterale richting berekend. De formule die hiervoor is gebruikt, is uit eerdere literatuur verkregen. (Salavati, et al., 2009)

\[
V_{ap} = \frac{\sum_{n=1}^{N-1} \sqrt{(x_{AP(n+1)} - x_{AP(n)})^2}}{T}
\]

\[
V_{ml} = \frac{\sum_{n=1}^{N-1} \sqrt{(x_{ML(n+1)} - x_{ML(n)})^2}}{T}
\]

95% van het oppervlak waarbinnen het center of pressure beweegt
De uitkomstmaat van 95% van het oppervlak waarbinnen het COP bewoog is berekend in mm². Er is een ellips gemaakt die 95% van de datapunten van het COP bevat. De formule voor deze uitkomstmaat is uit eerdere literatuur gehaald. (Doyle, Hsiao-Wecksler, Ragan, & Rosengren, 2007)

\[
\text{Oppervlak} = \pi ab
\]

\[
a = \sqrt{3,00(SD_{AP}^2 + SD_{ML}^2 + D)}
\]

\[
b = \sqrt{3,00(SD_{AP}^2 + SD_{ML}^2 - D)}
\]

\[
D = \sqrt{(SD_{AP}^2 + SD_{ML}^2) - 4(SD_{AP}^2SD_{ML}^2 - SD_{APML}^2)}
\]

\[
SD_{APML} = \frac{\sum_{n=1}^{N} x_{AP(n)}x_{ML(n)}}{N}
\]
2.8 Data-analyse
Alle data zijn verzameld op een frequentie van 100 Hz. De data van de FP en het WBB zijn eerst gefilterd met een zesde orde Butterworth filter, zero-phase low-pass, met een cut-off-frequentie van 10 Hz. (Salavati, et al., 2009) Daarna zijn de uitkomstmaten van de volledige meting van de FP en het WBB berekend met behulp van op maat geschreven software in Matlab. Daarnaast zijn de uitkomstmaten van de eerste 10, 20 en de volledige 30 seconden van de WBB-data berekend. Al deze uitkomstmaten zijn gebruikt voor de statistische analyse.

2.9 Statistische analyse
Met behulp van SPSS worden de uitkomstmaten van de metingen verwerkt. Voor de betrouwbaarheid van de mal en de plaat is een two-way mixed intraclass correlation coefficient (ICC) gebruikt. Voor de meting met proefpersonen worden alle vier de condities berekend (rechts ogen open, links ogen open, rechts ogen gesloten en links ogen gesloten). Als eerste is de validiteit van het WBB bepaald door Pearson's correlatiecoëfficiënt te berekenen tussen het WBB en de FP. De betrouwbaarheid van het WBB is bepaald met een two-way mixed intraclass correlation coefficient. Hiervoor zijn de drie pogingen van één conditie van een proefpersoon gebruikt. De correlatie en de ICC zijn per uitkomstmaat bepaald. Als laatste is er voor iedere combinatie tussen de duur (10, 20 en 30 seconden) en het aantal pogingen (1, 2 of 3) de ICC bepaald.
3 Resultaten

3.1 Validiteit
Ten eerste werd de validiteit van het WBB onderzocht. De resultaten van de vier condities staan in tabel 3 en tabel 4. Door een fout in het opslaan van de FP-data waren niet alle metingen bruikbaar. De FP-data die een meetduur hadden van vijf seconden of korter zijn verwijderd uit dit onderzoek. De overige data zijn zo geknipt dat de FP-data even lang waren als de WBB-data van één meting. Voor de conditie rechtervoet ogen open zijn de data van 16 proefpersonen gebruikt, voor linkervoet ogen open 18, voor rechtervoet ogen gesloten 12 en voor linkervoet ogen gesloten 11. Bij de metingen met ogen gesloten zijn niet alle metingen even lang, omdat sommige proefpersonen al eerder uit balans raakten waardoor de meting eerder is afgebroken. In tabel 4 is vermeld hoelang iedere proefpersoon zijn balans heeft weten te houden. Dit lag gemiddeld op 24 seconden op de rechtervoet en gemiddeld op 23 seconden op de linkervoet.

Voor alle condities geldt dat de afgelegde weg en het oppervlak de beste correlatie geven (R ≥ 0,88). Bij elke conditie waren de gemiddelde COP en het verschil tussen de maximale waarde naar mediaal en lateraal significant verschillend (p ≥ 0,05), behalve het gemiddelde COP bij de linkervoet ogen gesloten. De standaarddeviatie had bij de meeste condities een correlatie van 0,70 of hoger, behalve bij de rechtervoet ogen open de standaarddeviatie in anterio-posteriore richting. De snelheid in mediaal-laterale richting was in elke conditie een valide maat voor afgelegde weg op een been (R ≥ 0,70). De snelheid in anterio-posteriore richting was slechts bij de conditie LG valide (R = 0,80).

3.2 Betrouwbaarheid
De betrouwbaarheid van de mal en de plaat zijn getest met behulp van gewichten. Hieruit is een zeer hoge betrouwbaarheid gekomen. De ICC van de mal is 0,99 en de ICC van de plaat is 0,98.

Voor het bepalen van de betrouwbaarheid van de WBB zijn de resultaten van alle 25 proefpersonen gebruikt. De betrouwbaarheid van de WBB is bepaald met behulp van de ICC (tabel 3). Hieruit blijkt dat alle maten voor de condities met ogen open een hoge betrouwbaarheid geven (ICC = 0,78-0,93), behalve de uitkomstmaat standaarddeviatie in anterio-posteriore richting op de rechtervoet (ICC = 0,64) en op de linkervoet (ICC = 0,68) en het oppervlak op de linkervoet (ICC = 0,73). De condities met ogen gesloten hebben allemaal een hoge betrouwbaarheid (ICC = 0,77-0,97), alleen de ICC van de afgelegde weg bij de rechtervoet is laag (ICC = 0,55).

3.3 Nauwkeurigheid
De standard error (SE) en de minimum detectable change (MDC) zijn alleen berekend van de uitkomstmaten die een correlatie hadden van 0,70 of hoger.

De standaard error bij de uitkomstmaten was voor:
- de standaarddeviatie in mediaal-laterale richting was 0,27-0,68 voor de FP en 0,29-0,63 voor het WBB
- de afgelegde weg 119,30-265,34 voor de FP en 134,62-271,41 voor het WBB
- de snelheid in mediaal-laterale richting 1,89-5,69 voor de FP en 1,85-4,51 voor het WBB
- het oppervlak 21,56-52,97 voor de FP en 20,42-53,96 voor het WBB

De MDC bij de uitkomstmaten was voor:
- de standaarddeviatie in mediaal-laterale richting 0,7-1,9 voor de FP en 0,8-1,7 voor het WBB
- de afgelegde weg 330,7-735,5 voor de FP en 373,1-752,3 voor het WBB
- de snelheid in mediaal-laterale richting 5,2-15,8 voor de FP en 5,1-12,5 voor het WBB
- het oppervlak 59,8-154,5 voor de FP en 56,6-155,1 voor het WBB
Tabel 3. Validiteit en betrouwbaarheid van het WBB voor de metingen met ogen open

<table>
<thead>
<tr>
<th></th>
<th>FP</th>
<th>WBB</th>
<th>Mean diff.</th>
<th>R</th>
<th>ICC WBB (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>gem. COP</td>
<td>2,1 (2,0)</td>
<td>0,8 (1,2)</td>
<td>1,3</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>SD AP</td>
<td>8,5 (0,6)</td>
<td>8,1 (0,5)</td>
<td>0,4</td>
<td>0,56*</td>
</tr>
<tr>
<td></td>
<td>SD ML</td>
<td>5,8 (0,3)</td>
<td>6,3 (0,4)</td>
<td>-0,5</td>
<td>0,94**</td>
</tr>
<tr>
<td></td>
<td>SE MDC</td>
<td>0,31</td>
<td>0,36</td>
<td>0,9</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td>max. ML</td>
<td>30,6 (1,8)</td>
<td>43,5 (2,9)</td>
<td>-12,9</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>afgelegde weg SE MDC</td>
<td>1175,8 (147,3)</td>
<td>1257,0 (146,9)</td>
<td>-81,2</td>
<td>0,97**</td>
</tr>
<tr>
<td></td>
<td>snelheid AP</td>
<td>27,6 (1,7)</td>
<td>32,0 (1,4)</td>
<td>-4,4</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>snelheid ML</td>
<td>30,7 (2,4)</td>
<td>32,6 (2,0)</td>
<td>-1,9</td>
<td>0,85**</td>
</tr>
<tr>
<td></td>
<td>SE MDC</td>
<td>2,44</td>
<td>2,02</td>
<td>6,8</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td>oppervlak</td>
<td>271,9 (55,7)</td>
<td>288,3 (55,9)</td>
<td>-16,4</td>
<td>0,99**</td>
</tr>
<tr>
<td></td>
<td>SEM MDC</td>
<td>55,7</td>
<td>55,9</td>
<td>154,5</td>
<td>0,83</td>
</tr>
<tr>
<td>LO</td>
<td>gem. COP</td>
<td>-0,8 (1,9)</td>
<td>1,8 (1,0)</td>
<td>-2,6</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>SD AP</td>
<td>8,2 (0,5)</td>
<td>8,4 (0,5)</td>
<td>-0,2</td>
<td>0,75**</td>
</tr>
<tr>
<td></td>
<td>SD ML</td>
<td>5,3 (0,3)</td>
<td>5,8 (0,3)</td>
<td>-0,5</td>
<td>0,87**</td>
</tr>
<tr>
<td></td>
<td>SE MDC</td>
<td>0,27</td>
<td>0,29</td>
<td>0,7</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>max. ML</td>
<td>29,2 (1,8)</td>
<td>39,8 (3,0)</td>
<td>-10,6</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>afgelegde weg SE MDC</td>
<td>1037,2 (119,3)</td>
<td>1145,7 (134,6)</td>
<td>-108,5</td>
<td>0,88**</td>
</tr>
<tr>
<td></td>
<td>snelheid AP</td>
<td>27,1 (1,9)</td>
<td>30,1 (1,4)</td>
<td>-3,0</td>
<td>0,61**</td>
</tr>
<tr>
<td></td>
<td>snelheid ML</td>
<td>28,9 (1,9)</td>
<td>30,4 (1,9)</td>
<td>-1,5</td>
<td>0,74**</td>
</tr>
<tr>
<td></td>
<td>SE MDC</td>
<td>1,89</td>
<td>1,85</td>
<td>5,2</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>oppervlak</td>
<td>242,8 (53,0)</td>
<td>264,5 (54,0)</td>
<td>-21,7</td>
<td>0,98**</td>
</tr>
<tr>
<td></td>
<td>SEM MDC</td>
<td>52,97</td>
<td>53,96</td>
<td>146,8</td>
<td>0,73</td>
</tr>
</tbody>
</table>

*RO: rechtersoet ogen open; LO: linkersoet ogen open; Mean diff.: het verschil tussen de FP gemiddelden en de WBB gemiddelden; R: correlatiecoëfficiënt; ICC: intraclass correlation coefficient; gemiddelde COP (mm); SD AP: standaard deviatie in anteriorposteriore richting; SD ML: standaard deviatie in mediaal-laterale richting; max. ML (mm): het verschil tussen de maximale waarde naar mediaal en lateraal; afgelegde weg (mm); snelheid AP (mm/s): snelheid in anteriorposteriore richting; snelheid ML (mm/s): snelheid in mediaal-laterale richting; oppervlak (mm²); SE: standard error; MDC: minimum detectable change (mm); * p < 0,05, ** p < 0,01.*
Tabel 4. Validiteit en betrouwbaarheid van het WBB voor de metingen met ogen gesloten

<table>
<thead>
<tr>
<th></th>
<th>FP</th>
<th>WBB</th>
<th>Mean diff.</th>
<th>R</th>
<th>ICC WBB (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gem. COP</td>
<td>1,8 (1,9)</td>
<td>2,0 (1,5)</td>
<td>-0,2</td>
<td>0</td>
<td>0,77</td>
</tr>
<tr>
<td>SD AP</td>
<td>12,3 (0,7)</td>
<td>13,2 (0,7)</td>
<td>-0,9</td>
<td>0,87**</td>
<td>0,84</td>
</tr>
<tr>
<td>SD ML</td>
<td>11,0 (0,5)</td>
<td>12,4 (0,4)</td>
<td>-1,4</td>
<td>0,86**</td>
<td>0,82</td>
</tr>
<tr>
<td>SE MDC</td>
<td>0,52</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>1,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. ML</td>
<td>51,7 (2,7)</td>
<td>62,6 (2,6)</td>
<td>-10,9</td>
<td>0</td>
<td>0,79</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE MDC</td>
<td>2091,7 (251,9)</td>
<td>2142,6 (271,4)</td>
<td>-50,9</td>
<td>0,89**</td>
<td>0,91</td>
</tr>
<tr>
<td>snelheid AP</td>
<td>54,9 (3,9)</td>
<td>56,0 (3,0)</td>
<td>-1,1</td>
<td>0,67*</td>
<td>0,93</td>
</tr>
<tr>
<td>snelheid ML</td>
<td>64,7 (4,2)</td>
<td>63,0 (3,7)</td>
<td>4,7</td>
<td>0,72**</td>
<td>0,95</td>
</tr>
<tr>
<td>SE MDC</td>
<td>14,1</td>
<td>3,66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oppervlak</td>
<td>269,1 (21,6)</td>
<td>307,9 (20,4)</td>
<td>-38,8</td>
<td>0,90**</td>
<td>0,85</td>
</tr>
<tr>
<td>SE MDC</td>
<td>21,56</td>
<td>20,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,8</td>
<td>56,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gem. COP</td>
<td>2,1 (3,1)</td>
<td>-1,2 (1,3)</td>
<td>3,3</td>
<td>0,73*</td>
<td>0,79</td>
</tr>
<tr>
<td>SD AP</td>
<td>15,1 (1,5)</td>
<td>16,4 (1,6)</td>
<td>-1,3</td>
<td>0,81**</td>
<td>0,88</td>
</tr>
<tr>
<td>SD ML</td>
<td>12,1 (0,7)</td>
<td>13,4 (0,6)</td>
<td>-1,3</td>
<td>0,97**</td>
<td>0,93</td>
</tr>
<tr>
<td>SE MDC</td>
<td>0,68</td>
<td>0,63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,9</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. ML</td>
<td>58,1 (3,4)</td>
<td>72,2 (7,0)</td>
<td>-14,1</td>
<td>0</td>
<td>0,91</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE MDC</td>
<td>2322,8 (265,3)</td>
<td>2289,6 (262,2)</td>
<td>33,2</td>
<td>0,90**</td>
<td>0,96</td>
</tr>
<tr>
<td>snelheid AP</td>
<td>65,5 (6,6)</td>
<td>64,2 (5,7)</td>
<td>1,3</td>
<td>0,80**</td>
<td>0,97</td>
</tr>
<tr>
<td>snelheid ML</td>
<td>71,8 (5,7)</td>
<td>68,7 (4,5)</td>
<td>3,1</td>
<td>0,81**</td>
<td>0,91</td>
</tr>
<tr>
<td>SE MDC</td>
<td>5,69</td>
<td>4,51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,8</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oppervlak</td>
<td>429,2 (50,8)</td>
<td>458,6 (39,4)</td>
<td>-29,4</td>
<td>0,93**</td>
<td>0,89</td>
</tr>
<tr>
<td>SE MDC</td>
<td>50,82</td>
<td>39,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140,9</td>
<td>109,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RG: rechtervoet ogen gesloten; **LO:** linkervoet ogen gesloten; **Mean diff.**; het verschil tussen de FP gemiddelden en de WBB gemiddelden; **R:** correlatiecoëfficiënt; **ICC WBB (95% CI):** standaard deviatie in anteriorposteriore richting; **SD:** standaard deviatie; **ML:** maximum waarde naar mediaal en lateraal; **SE:** standard error; **MDC:** minimum detectable change (mm); * p < 0.05, ** p < 0.01.

Tabel 5. Duur bij metingen ogen gesloten

<table>
<thead>
<tr>
<th></th>
<th>duur meting 1</th>
<th>duur meting 2</th>
<th>duur meting 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG</td>
<td>24 (1,9)</td>
<td>24 (1,9)</td>
<td>24 (2,0)</td>
</tr>
<tr>
<td>LG</td>
<td>22 (1,9)</td>
<td>25 (1,6)</td>
<td>22 (1,8)</td>
</tr>
</tbody>
</table>

De gemiddelde duur van de meting van alle proefpersonen in seconden.
3.4 Duur en lengte metingen

Nadat de validiteit en de betrouwbaarheid van het WBB was bepaald, is er nog onderzocht wat de optimale combinatie is tussen de duur en het aantal metingen met een minimale ICC van 0,80. De resultaten staan in tabel 6, de gehele tabellen zijn in de bijlage te vinden (tabel 8-11). Er is onderzocht wanneer elke conditie een acceptabele betrouwbaarheid kreeg (ICC ≥ 0,80). Voor de metingen op de rechtervoet ogen open waren alle uitkomstmaten betrouwbaar na één meting van 20 seconden (ICC = 0,91-0,98). De standaard deviatie in anteriorposteriore richting haalde echter na drie keer 30 seconden meten nog geen ICC van 0,80. Voor de metingen op de linkervoet ogen open waren alle uitkomstmaten na één meting van 30 seconden betrouwbaar (ICC = 0,93-0,99). De metingen op de rechtervoet ogen gesloten bereikten net als de meting op de linkervoet ogen open een acceptabele betrouwbaarheid na één meting van 30 seconden (ICC = 0,85-0,99). De metingen op de linkervoet ogen gesloten waren betrouwbaar na één keer 20 seconden meten (ICC = 0,84-0,97).

Tabel 6. ICC waarden van de eerste meting van alle vier de condities

<table>
<thead>
<tr>
<th></th>
<th>RO</th>
<th>LO</th>
<th>RG</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duur (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gem. COP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,98</td>
<td>0,98</td>
<td>0,96</td>
<td>0,96</td>
</tr>
<tr>
<td>30</td>
<td>0,98</td>
<td>0,99</td>
<td>0,98</td>
<td>0,98</td>
</tr>
<tr>
<td>SD AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,67</td>
<td>0,81</td>
<td>0,75</td>
<td>0,91</td>
</tr>
<tr>
<td>30</td>
<td>0,74</td>
<td>0,93</td>
<td>0,88</td>
<td>0,97</td>
</tr>
<tr>
<td>SD ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,92</td>
<td>0,94</td>
<td>0,94</td>
<td>0,84</td>
</tr>
<tr>
<td>30</td>
<td>0,98</td>
<td>0,97</td>
<td>0,95</td>
<td>0,98</td>
</tr>
<tr>
<td>max. M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,97</td>
<td>0,87</td>
<td>1,00</td>
<td>0,96</td>
</tr>
<tr>
<td>30</td>
<td>0,99</td>
<td>0,98</td>
<td>0,99</td>
<td>1,00</td>
</tr>
<tr>
<td>max. L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,98</td>
<td>0,00</td>
<td>0,98</td>
<td>0,95</td>
</tr>
<tr>
<td>30</td>
<td>0,98</td>
<td>0,96</td>
<td>0,99</td>
<td>1,00</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,95</td>
<td>0,82</td>
<td>0,84</td>
<td>0,95</td>
</tr>
<tr>
<td>30</td>
<td>0,98</td>
<td>0,97</td>
<td>0,85</td>
<td>0,96</td>
</tr>
<tr>
<td>snelheid AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,98</td>
<td>0,97</td>
<td>0,94</td>
<td>0,88</td>
</tr>
<tr>
<td>30</td>
<td>0,98</td>
<td>0,99</td>
<td>0,96</td>
<td>0,90</td>
</tr>
<tr>
<td>snelheid ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,97</td>
<td>0,97</td>
<td>0,94</td>
<td>0,96</td>
</tr>
<tr>
<td>30</td>
<td>0,99</td>
<td>0,99</td>
<td>0,98</td>
<td>0,98</td>
</tr>
<tr>
<td>oppervlak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>0,91</td>
<td>0,91</td>
<td>0,91</td>
<td>0,93</td>
</tr>
<tr>
<td>30</td>
<td>0,92</td>
<td>0,97</td>
<td>0,91</td>
<td>0,98</td>
</tr>
</tbody>
</table>

De ICC waarden van iedere uitkomstmaat zijn gebaseerd de meetduur van 10, 20 of 30 seconden en 1,2 of 3 metingen. RO: rechtervoet ogen open; LO: linkervoet ogen open; RG: rechtervoet ogen gesloten; LG: linkervoet ogen gesloten.
4 Discussie

Het doel van dit onderzoek was om een valide en betrouwbaar meetinstrument te ontwikkelen om de balans op één been en de veranderingen daarin bij sporters in kaart te brengen. De hypothese die hierbij was opgesteld luidde: “Het Wii Balance Board is een valide (R ≥ 0,70) en betrouwbaar (ICC ≥ 0,75) meetinstrument om de balans op één been te meten en de veranderingen daarin waar te nemen. Er zal echter wel een foutmarge zitten in het detecteren van het COP op het WBB ten opzichte van de FP. Daarnaast zal er minimaal één keer 20 seconden gemeten moeten worden om betrouwbare uitkomsten te krijgen (ICC ≥ 0,80).”

4.1 Uitkomsten validiteit

De uitkomsten van de validiteit waren hoger dan in de literatuur. In het onderzoek van Clark (2010) was er een correlatie van 0,80 gevonden voor de metingen met ogen open en een correlatie van 0,77 voor de metingen met ogen gesloten. In dit onderzoek was er een correlatie van 0,97 (op de rechtervoet) en 0,88 (op de linkervoet) gevonden voor de metingen met ogen open en een correlatie van 0,89 (op de rechtervoet) en 0,90 (op de linkervoet) voor de metingen met ogen gesloten. Het gemiddelde COP ten opzichte van het midden van de voet en het verschil tussen de uiterste mediale en laterale waarde zijn niet valide (p > 0,05). Dit zou onder andere kunnen komen doordat er maar twee meetwaarden gebruikt worden om het verschil tussen de uiterste waarde naar mediaal en de uiterste waarde naar lateraal te bepalen. Wanneer dit toevallig een uitschieter is, komt dit al meteen niet meer overeen met de waarden van de FP. De snelheid van het COP is voor de rechtervoet ogen open en ogen gesloten ook niet valide (R < 0,70). De standaard deviatie in AP richting is op de rechtervoet met ogen open ook niet valide (R = 0,56). Een eerder onderzoek is gebleken dat de waarden in ML richting het sterkst geassocieerd worden met het detecteren van chronische enkel instabiliteit. (Hertel, Braham, Hale, & Olmsted-Kramer, 2006) De uitkomstwaarden die wel valide zijn (R > 0,70) bij alle vier de condities en die gebruikt kunnen worden voor een vervolgonderzoek zijn: de standaard deviatie in mediaal-laterale richting, de afgelegde weg, de snelheid in mediaal-laterale richting en het oppervlak.

4.2 Uitkomsten betrouwbaarheid

De uitkomsten van de betrouwbaarheid kwamen wel weer overeen met de literatuur. In het onderzoek van Clark (2010) was er een ICC van 0,86 gevonden voor de metingen met ogen open en een ICC van 0,81 voor de metingen met ogen gesloten. Bij dit onderzoek is er een hogere betrouwbaarheid gevonden voor de metingen met ogen open (ICC = 0,95-0,98). Voor de meting met ogen gesloten is er op de rechtervoet ook een hogere betrouwbaarheid gevonden (ICC = 0,91), maar op de linkervoet slechts een ICC van 0,63. Dit zou onder andere kunnen komen doordat er gemiddeld minder lang op de linkervoet (23 seconden) gestaan kon worden dan op de rechtervoet (24 seconden). Hierdoor zijn er minder en kortere metingen om de betrouwbaarheid te bepalen.

4.3 Uitkomstmaten nauwkeurigheid

De MDC van het WBB lagen dicht bij die van de FP. Bij enkele uitkomstmaten was de MDC van het WBB zelfs lager. Dit was bij de metingen met ogen open voor de rechtervoet de snelheid ML (FP = 6,8, WBB = 5,6). Bij de metingen met ogen gesloten voor de rechtervoet de SDML (FP = 1,4, WBB = 1,3), de snelheid ML (FP = 11,6, WBB = 10,1) en het oppervlak (FP = 59,8, WBB = 56,6) en bij linkervoet de SDML (FP = 1,9, WBB = 1,7), de afgelegde weg (FP = 735,5, WBB = 726,8), de snelheid ML (FP = 15,8, WBB = 12,5) en het oppervlak (FP = 140,9-109,9).

4.4 Uitkomsten duur en aantal herhalingen
Tenslotte is er nog bepaald wat de optimale combinatie is tussen de duur en het aantal metingen. In eerder onderzoek is dit ook al bepaald voor metingen op één been, hiervoor werd echter de postural sway gebruikt. Uit het onderzoek van Clair (1996) bleek dat er slechts één meting nodig was van 20-30 seconden. Dit kwam overeen met de waarden uit dit onderzoek. Wanneer alleen de uitkomstmaten gebruikt worden die valide zijn bevonden (de standaard deviatie in ML richting, de afgelegde weg, de snelheid in ML richting en het oppervlak) is voor zowel de meting met ogen open als de meting met ogen gesloten slechts één meting nodig van 20 seconden.

4.5 Beperkingen van het onderzoek
Een zwak punt van dit onderzoek is de manier waarop de betrouwbaarheid van de mal is bepaald. Hier is dat gedaan door iedere keer gewichten tegen de mal aan te leggen. Tijdens de meting wordt er een voet tegen de mal aan gezet. Afhankelijk van hoeveel iemand op de voet leunt (vorming van de voet) en hoeveel de voet is gepronereerd is er mogelijk een kleine afwijking. Tijdens het opmeten van de voetbreedte heeft de vervorming van de voet ook effect, wanneer iemand meer of minder op die voet leunt.

Het meetinstrument wordt in een vervolgonderzoek gebruikt bij HALO-studenten. De studenten die aan dit onderzoek hebben meegedaan sporten gemiddeld veel minder in een week dan HALO studenten. In dit onderzoek was dat namelijk gemiddeld vijf uur per week en een HALO student sport gemiddeld 13 uur per week. Dit zou van invloed kunnen zijn op de duur en het aantal metingen dat nodig is, want er is uit de literatuur gebleken dat mensen die meer sporten een betere balans hebben. (Peterson, Junge, Chomiak, Graf-Baumann, & Dvorak, 2000) (Chomiak, Junge, Peterson, & Dvorak, 2000)

Bij de validatie van het WBB waren niet alle data van de 25 proefpersonen bruikbaar, maar hierdoor is de power van het onderzoek niet afgenomen. De power is acht er af met de ongunstigste data van dit onderzoek berekend, hier kwam een power uit van 0,95.

In dit onderzoek is iedere keer dezelfde volgorde van meten gebruikt: rechtervoet ogen open, linkervoet ogen open, rechtervoet ogen gesloten en tot slot de linkervoet ogen gesloten. Doordat iedere keer dezelfde volgorde wordt gebruikt kan er een leereffect optreden. In de literatuur is bewezen dat dit ook gebeurt. (Warren, Schneider, Sullivan, & Bell, 2006) In dit onderzoek is hier geen rekening mee gehouden. In een vervolgonderzoek zou er met meer proefpersonen een willekeurige testvolgorde gebruikt kunnen worden.

4.6 Opvallende bevindingen
Een opvallende bevinding in dit onderzoek is dat bij de meting met ogen gesloten de afgelegde weg van het COP (2217 mm) bijna twee maal zo veel is als de afgelegde weg van het COP bij de meting met ogen open (1202 mm). Terwijl het oppervlak tussen de metingen met ogen open (277 mm²) en de meting op de rechtervoet met ogen gesloten (308 mm²) relatief weinig scheelt. De meting op de linkervoet met ogen gesloten is echter wel veel meer (429 mm²). Dit zou betekenen dat er op de rechtervoet een betere balans is. Dit zou onder andere kunnen komen doordat 17 van de 25 proefpersonen aangaven rechts als voorkeursbeen te hebben.
5 Conclusie

De conclusie die uit dit onderzoek getrokken kan worden is dat het WBB een geschikt meetinstrument is om de balans op één been te meten en de veranderingen daarin in beeld te brengen. Echter niet alle uitkomsten zijn valide om te meten op het WBB. De uitkomsten die valide zijn en gebruikt kunnen worden in een vervolgonderzoek zijn de standaard deviatie in mediaal-laterale richting (R = 0,86), de afgelegde weg (R = 0,88), de snelheid in mediaal-laterale richting (R = 0,72) en het oppervlak van het COP (R = 0,90). Deze vier uitkomsten gaven ook een hoge betrouwbaarheid (ICC ≥ 0,75). De MDC van de uitkomsten lag echter wel erg hoog. Bij de standaard deviatie in mediaal-laterale richting lag dit tussen de 0,8 en de 1,7, bij de afgelegde weg tussen de 373,1 en de 752,3, bij de snelheid in mediaal-laterale richting tussen de 5,1 en de 12,5 en bij het oppervlak tussen de 56,6 en de 155,1. Dit houdt in dat kleine veranderingen in balans niet gemeten kunnen worden.

Wanneer in een vervolgonderzoek onderzocht gaat worden welke uitkomsten of combinatie van uitkomsten een voorspelling doen over het risico op enkelblessures is er slechts één meting van 30 seconden per conditie nodig om een betrouwbare uitkomst te krijgen (ICC ≥ 0,80). Dit is in tegenstelling tot wat er in de hypothese stond: “Er zal minimaal één keer 20 seconden gemeten moeten worden om een betrouwbare uitkomst te krijgen (ICC ≥ 0,80). Moet er minimaal één keer 30 seconden gemeten worden voordat alle uitkomsten betrouwbaar zijn. Wanneer alleen de vier condities gebruikt worden die valide zijn, is één meting van 20 seconden genoeg. Een andere belangrijke maat voor een vervolgonderzoek zou het gemiddelde COP ten opzichte van de voet geweest zijn. Op die manier had berekend kunnen worden of iemand meer naar binnen of buiten leunt op zijn voet. Helaas is deze uitkomst niet valide gebleken ten opzichte van de FP. In een vervolgonderzoek zou nog onderzocht kunnen worden naar een betere methode om dit te bepalen.
Literatuurlijst

Bijlage

Afbeelding 7. Het COP van de FP en het WBB bij een meting met ogen open

Afbeelding 8. Het COP van de FP en het WBB bij een meting met ogen gesloten
Tabel 7. Duur van de metingen met ogen gesloten per proefpersoon

<table>
<thead>
<tr>
<th>Proefpersoon</th>
<th>Rechtervoet ogen gesloten</th>
<th>Linkervoet ogen gesloten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

De duur van de metingen met ogen gesloten is gegeven in seconden.
Tabel 8. Rechtervoet ogen open

<table>
<thead>
<tr>
<th></th>
<th>Duur (sec)</th>
<th>1 meting</th>
<th>2 metingen</th>
<th>3 metingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>gem. COP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,98</td>
<td>0,92</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,92</td>
<td>0,98</td>
</tr>
<tr>
<td>SD AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,91</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,67</td>
<td>0,92</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,74</td>
<td>0,92</td>
<td>0,93</td>
</tr>
<tr>
<td>SD ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,96</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,92</td>
<td>0,93</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,94</td>
<td>0,98</td>
</tr>
<tr>
<td>max. M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,97</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td>max. L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,73</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,98</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,95</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>snelheid AP</td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,98</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td>snelheid ML</td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,97</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>oppervlak</td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,91</td>
<td>0,96</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,92</td>
<td>0,95</td>
<td>0,97</td>
</tr>
</tbody>
</table>

De ICC waarden van iedere uitkomstmaat zijn gebaseerd de meetduur van 10, 20 of 30 seconden en 1,2 of 3 metingen.

Tabel 9. Linkervoet ogen open

<table>
<thead>
<tr>
<th></th>
<th>Duur (sec)</th>
<th>1 meting</th>
<th>2 metingen</th>
<th>3 metingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>gem. COP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,91</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,98</td>
<td>0,93</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,93</td>
<td>0,98</td>
</tr>
<tr>
<td>SD AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,92</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,81</td>
<td>0,84</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,93</td>
<td>0,91</td>
<td>0,96</td>
</tr>
<tr>
<td>SD ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,87</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,94</td>
<td>0,92</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,97</td>
<td>0,95</td>
<td>0,96</td>
</tr>
<tr>
<td>max. M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,90</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,87</td>
<td>0,93</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,94</td>
<td>0,98</td>
</tr>
<tr>
<td>max. L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,84</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,00</td>
<td>0,93</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,96</td>
<td>0,94</td>
<td>0,77</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,82</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,97</td>
<td>0,97</td>
<td>1,00</td>
</tr>
<tr>
<td>snelheid AP</td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,97</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td>snelheid ML</td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,97</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>oppervlak</td>
<td>10</td>
<td>X</td>
<td>0,96</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,91</td>
<td>0,90</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,97</td>
<td>0,95</td>
<td>0,95</td>
</tr>
</tbody>
</table>

De ICC waarden van iedere uitkomstmaat zijn gebaseerd de meetduur van 10, 20 of 30 seconden en 1,2 of 3 metingen.
Tabel 10. Rechtersvoet ogen gesloten

<table>
<thead>
<tr>
<th></th>
<th>Duur (sec)</th>
<th>1 meting</th>
<th>2 metingen</th>
<th>3 metingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>gem. COP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,93</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,96</td>
<td>0,94</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,96</td>
<td>0,98</td>
</tr>
<tr>
<td>SD AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,63</td>
<td>0,87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,75</td>
<td>0,93</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,88</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td>SD ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,89</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,94</td>
<td>0,95</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,95</td>
<td>0,95</td>
<td>0,98</td>
</tr>
<tr>
<td>max. M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,88</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1,00</td>
<td>0,95</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td>max. L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,93</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,98</td>
<td>0,92</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,99</td>
<td>0,93</td>
<td>0,98</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,84</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,85</td>
<td>0,99</td>
<td>0,97</td>
</tr>
<tr>
<td>snelheid AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,92</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,94</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,96</td>
<td>0,97</td>
<td>1,00</td>
</tr>
<tr>
<td>snelheid ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,94</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,98</td>
<td>1,00</td>
</tr>
<tr>
<td>oppervlak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,78</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,91</td>
<td>0,96</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,91</td>
<td>0,94</td>
<td>0,99</td>
</tr>
</tbody>
</table>

De ICC waarden van iedere uitkomstmaat zijn gebaseerd de meetduur van 10, 20 of 30 seconden en 1,2 of 3 metingen.

Tabel 11. Linkervoet ogen gesloten

<table>
<thead>
<tr>
<th></th>
<th>Duur (sec)</th>
<th>1 meting</th>
<th>2 metingen</th>
<th>3 metingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>gem. COP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,96</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,96</td>
<td>0,96</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,97</td>
<td>0,98</td>
</tr>
<tr>
<td>SD AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,90</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,91</td>
<td>0,88</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,97</td>
<td>0,87</td>
<td>1,00</td>
</tr>
<tr>
<td>SD ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,81</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,84</td>
<td>0,91</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,96</td>
<td>0,99</td>
</tr>
<tr>
<td>max. M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,95</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,96</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1,00</td>
<td>0,97</td>
<td>0,99</td>
</tr>
<tr>
<td>max. L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,92</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,95</td>
<td>0,95</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1,00</td>
<td>0,99</td>
<td>0,98</td>
</tr>
<tr>
<td>afgelegde weg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,92</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,95</td>
<td>0,92</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,96</td>
<td>0,99</td>
<td>0,99</td>
</tr>
<tr>
<td>snelheid AP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,99</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,88</td>
<td>0,97</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,90</td>
<td>0,99</td>
<td>1,00</td>
</tr>
<tr>
<td>snelheid ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,96</td>
<td>0,93</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,99</td>
<td>0,99</td>
</tr>
<tr>
<td>oppervlak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>X</td>
<td>0,94</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,93</td>
<td>0,85</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,98</td>
<td>0,92</td>
<td>1,00</td>
</tr>
</tbody>
</table>

De ICC waarden van iedere uitkomstmaat zijn gebaseerd de meetduur van 10, 20 of 30 seconden en 1,2 of 3 metingen.

Scriptie Lianne Langendam, De Haagse Hogeschool, Juni 2013
Meetprotocol balans meting op 1 been

Tijd meting: ca. 20 minuten per proefpersoon

Benodigdheden:
- Wii Balance Board (WBB)
- Laptop met BTWii software
- Matlab software (op maat geschreven software om de data van de FP te bewerken)
- Force plate (FP) (AMTI type OR6-GT-1000)
- Computer met AMTI software
- Mal
- Plaat
- Pen
- Papier
- Stippen (voor op de muur, twee maal)

Meetopstelling:
De FP wordt op een vlakke ondergrond geplaatst. De plaat en het WBB worden hier bovenop geplaatst zoals in afbeelding 1. Vervolgens wordt de mal om het WBB heen geplaatst. Aan beide kanten van de lengterichting van het WBB wordt een stip op de muur of op een scherm geplakt (voor de focus van de proefpersoon).

Afbeelding 1. Meetopstelling
De FP wordt aangesloten op de computer en aan het netstroom. Het WBB wordt gesynchroniseerd met de laptop door middel van bluetooth.

Voorbereiding meting:
Uitvoering:

Voorbereiding

- Zet de meetingopstelling klaar zoals hiervoor is beschreven
- Begin met twee oefenmetingen van 20-30 seconden op zowel de rechtervoet als de linkervoet en met ogen open en ogen gesloten
- Voer de gegevens van de proefpersoon in, in Btwii
- Meet de voetbreedtes van de rechtervoet en de linkervoet om de beurt op
- Voer de gemiddelde voetbreedtes van de rechtervoet en linkervoet in, in Btwii

Start meting

Meting 1: begin op de rechtervoet, ogen open

- Kalibreer de FP en het WBB
- Vink de juiste houding aan in het Btwii programma
- De proefpersoon plaatst als eerste de rechtervoet op het WBB, tegen de rand van de mal aan (de tester zorgt ervoor dat de mal niet verschuift tijdens het plaatsen van de voet)
- Vervolgens wordt de mal weggehaald
- Op het Btwii programma en de AMTI software worden een meetduur van 30 seconden ingesteld
- De tester telt af vanaf drie en start daarna de meting van het WBB en de FP tegelijkertijd
- Zodra de 30 seconden afgelopen zijn heeft de proefpersoon 30 seconden rust
- Tijdens die rust worden de ruwe data van het WBB en de FP opgeslagen
- De mal wordt op zijn plaats terug gelegd

Meting 2: linkervoet, ogen open

- Kalibreer de FP en het WBB
- Vink de juiste houding aan in het Btwii programma
- De proefpersoon plaatst vervolgens de linkervoet op het WBB, tegen de rand van de mal aan (de proefpersoon kijkt nu de andere kant op)
- Herhaal de stappen van meting 1 (voor de linkervoet)

Meting 3: rechtervoet, ogen gesloten

- Herhaal de stappen van meting 1 (voor de rechtervoet, ogen gesloten)

Meting 4: linkervoet, ogen gesloten

- Herhaal de stappen van meting 1 (voor de linkervoet, ogen gesloten)
- Herhaal vervolgens nog meting 1 tot en met 4 nog twee keer
Document projectplan voor een onderzoeksproject

Naam: Lianne Langendam
Studentnummer: 09032355
e-mail: Lianne_langendam@hotmail.com
Behaalde studiepunten in de modules 9 t/m 12: 57
Datum: 05-02-2013

1. Onderwerp
Het ontwikkelen van een betrouwbaar meetinstrument om de balans op één been en veranderingen daarin bij sporters in beeld te brengen.
Werkveld: Sport/revalidatie
Beroepssrol: Onderzoeker/ontwerper

2. Probleemstelling

Aanleiding
Tijdens het sporten wordt er veel van je lichaam gevraagd. Het komt ook vaak voor dat sporters blessures oplopen, bijvoorbeeld bij de Haagse Academie voor Lichamelijke Opvoeding (HALO). In het eerste jaar heeft meer dan één derde van deze studenten een sportblessure en uiteindelijk loopt de helft van de studenten een blessure op tijdens zijn/haar opleiding. Een slechte balans kan hier een oorzaak van zijn. Van alle sportblessures zijn 12-20% enkelblessures. In ernstige gevallen zijn sporters dan voor zes maanden uitgeschakeld. Preventieve maatregelen, zoals balans- en coördinatietraining, verminderen het risico op enkelblessures. Om er achter te komen welke studenten een risico lopen op enkelblessures, moeten er vooraf testen worden uitgevoerd.

Doel
Er zijn al verschillende balanstesten die het risico op enkelblessures kunnen voorspellen. De Star Excursion Balance Test (SEBT) is een voorbeeld van een balanstest. Bij de SEBT moet de proefpersoon op één been staan en met het andere been in verschillende richtingen reiken. De afstand tot waar hij/zij de grond aantikt met het andere been wordt opgemeten en gebruikt als maat voor balans. Andere balanstesten gebruiken ook wel het center of pressure (COP). Het COP is al eerder als een betrouwbare maat verklaard om de balans op één been te meten. Een andere betrouwbare en valide balanstest om enkelblessures te voorspellen is de single leg balance test. Hierbij wordt echter alleen gekeken naar de afgelegde weg van het COP.

Vaak zijn dit soort meetopstellingen van balanstesten dure en grote laboratoriuminstallaties. Tijdens een testdag bij de HALO moeten er veel studenten worden getest binnen één dag. Hier is een goedkope en verplaatsbare opzet voor nodig. Een oplossing hiervoor zou het Wii Balance Board (WBB) zijn. Het WBB is al valide en betrouwbaar verklaard voor het meten van balans. Hierbij werd echter alleen gekeken naar de afgelegde weg van het COP.

De standaard testen bij het WBB, de Wii Fit game, kan vooruitgang meten in balans. De standaard testen zijn echter niet valide genoeg vergeleken met de single leg balance test op de force plate. Daarom is het doel van dit onderzoek: “Een betrouwbaar meetinstrument te ontwikkelen om de balans op één been en de verandering daarin bij sporters in beeld te brengen.” Hieruit moeten zoveel mogelijk verschillende uitkomstmatten te halen zijn, zodat in een vervolgonderzoek gekeken kan worden welke uitkomstmatten of combinatie van
uitkomstmaten een voorspelling kunnen doen over het risico op enkelblessures bij HALO studenten. Deze methode moet dan getest worden op validiteit en betrouwbaarheid.

Betrouwbaarheid
De betrouwbaarheid van de uitkomstmaten hangt af van de duur van de meting, het aantal herhalingen en de rust tussen de metingen. Het verschilt per uitkomstmaat hoe vaak en hoelang er gemeten moet worden. Andere factoren die invloed kunnen hebben op de betrouwbaarheid zijn de plaatsing van de voet, de plaatsing van de handen en de ogen open of dicht. Het WBB heeft een rechthoekige vorm, dit houdt in dat mensen bij met schoenmaat 41 of groter de tenen over de rand van het WBB steken. In de literatuur is beschreven dat uitkomstmaten in mediaal-laterale richting het beste risico op enkelblessures kunnen voorspellen. Wanneer het WBB wordt gedraaid past de voet er wel op, maar er is nog niet getest of dit even betrouwbaar is. Het WBB meet in alle vier de hoeken en wanneer het WBB is gedraaid liggen deze punten dichter bij elkaar, daardoor zou er minder precies gemeten kunnen worden.

Validiteit
Wanneer een betrouwbaar meetprotocol is ontwikkeld kan gekeken worden naar de validiteit. Om het meetprotocol op het WBB te testen op validiteit, worden de testen op zowel de force plate als op het WBB uitgevoerd. De force plate is al eerder valide en betrouwbaar verklaard volgens eerder onderzoek naar balans. Bij dat onderzoek is echter alleen gekeken naar de afgelegde weg van het COP, bij dit onderzoek wordt er gekeken naar zes verschillende uitkomstmaten.

Specifieke vraagstelling
De specifieke vraagstelling van dit onderzoek is: Kunnen met behulp van een Wii balance board de balans op één been en veranderingen daarin bij sporters in beeld gebracht worden?

3. Methode

Opzet meetprotocol
Proefpersonen
Voor dit onderzoek doen in totaal vijftig studenten van de Haagse Hogeschool mee. Voor het vooronderzoek tien. Voor het betrouwbaarheidsonderzoek doen twintig proefpersonen mee en voor het validiteitsonderzoek ook twintig (tien mannen en tien vrouwen). De proefpersonen hebben voor aanvang van de testen een toestemmingsverklaringsformulier ondertekend, waarmee zij aangaven volledig op de hoogte te zijn van de aard en het doel van het onderzoek.

Meetinstrumenten
Het Wii Balance Board (WBB) (Nintendo, Kyoto, Japan) is een onderdeel van de game WiiFit. Het WBB bezit dezelfde karakters als een force plate, het kan de grondreactiekraft meten en deelt deze op in drie componenten (X,Y en Z). Het bevat vier ingebouwde drucksensoren in de vier hoeken. De sensoren meten de krachtsverdeling en de resulterende verplaatsing van het COP. Het WBB heeft een bruikbaar oppervlak van 45 cm x 26.5 cm en wordt geplaatst op een vlakke ondergrond. Tijdens de meting werden de data van het WBB doorgestuurd naar de computer (door middel van bluetooth) en via een op maat geschreven software (Matlab) werden de uitkomstmaten berekend.

Om in later onderzoek te controleren of iemand met een enkelblessure meer naar binnen of naar buiten leunt op de voet, wordt een mal geplaatst over het WBB. De proefpersoon moet de binnenkant van de voet tegen de rand plaatsen, waarna een lat tegen het breedste gedeelte van de voet wordt geplaatst en de breedtemaat van de voet wordt genoteerd. Nadat de proefpersoon goed staat wordt de mal weer weggehaald, om het steunen tegen de randen te voorkomen.
Force plate van het Expersicecentrum Bewegingstechnologie wordt gebruikt om het protocol op validiteit te testen. De force plate wordt gekalibreerd volgens de aanbevelingen van de fabrikant.

Protocol
Voordat het betrouwbaarheidsonderzoek wordt uitgevoerd wordt eerst vooronderzoek gedaan naar de betrouwbaarheid van het WBB in de lengterichting en breedterichting. Het WBB heeft een rechthoekig vorm waardoor bij mensen met schoenmaat 41 of groter de tenen over de rand van het WBB steken. Wanneer het WBB een kwartslag gedraaid wordt past de voet er gemakkelijk op. In dit vooronderzoek worden tien proefpersonen gebruikt die 30 seconde op één been staan. De meting wordt twee keer uitgevoerd op de rechtevoet en de linkervoet, met een rustperiode van 15 seconden. Uit dit vooronderzoek komt de richting waarin het WBB geplaatst moet worden, lengte of breedterichting.

Voor het betrouwbaarheidsonderzoek worden alle proefpersonen gedurende 30 seconden gemeten op zowel de rechterevoet als de linkervoet en met ogen open en ogen gesloten. Bij de meting ogen open moeten de proefpersonen naar een stip op de muur kijken op ooghoogte. De test wordt op blote voeten uitgevoerd, het opgetrokken been licht gebogen en mag het standbeen niet raken. De handen worden gekruist op de schouders geplaatst.12 De meting begint met twee oefentesten, van 20-30 seconden op zowel de rechterevoet als de linkervoet en met ogen open en ogen gesloten. De methode voor het betrouwbaarheidsonderzoek wordt uit de literatuur gehaald, waar dit is uitgevoerd op een force plate.3 Elke meting wordt drie keer uitgevoerd in willekeurige volgorde, maar wel afwisselend rechts links of links recht. De rust tussen de metingen is 15 seconden. Voor de dataverwerking wordt de eerste 10, 20 en de gehele 30 seconden van iedere meting gebruikt. Deze worden gecombineerd met één tot en met drie herhalingen. Uit de dataverwerking zal voor iedere uitkomstmaat komen hoe vaak en voor hoelang er gemeten moet worden voor de meest betrouwbare maat.3

Voor het validiteitsonderzoek worden de resultaten van het betrouwbaarheidsonderzoek gebruikt. Daaruit komt een tijdsduur van de meting en het aantal herhalingen dat nodig is om iedere uitkomstmaat betrouwbaar te maken. Dit meetprotocol zal worden gebruikt om de validiteit van het protocol op het WBB te testen, door het te vergelijken met de uitkomstmaten die uit de FP.

Uitkomstmaten
De uitkomstmaten die uit zowel het betrouwbaarheidsonderzoek als het validiteitsonderzoek komen zijn hieronder beschreven.

Gemiddelde positie center of pressure
De gemiddelde positie van het COP in mm (ten opzichte van de voet) wordt berekend per been en opgesplitst in ogen open en ogen gesloten.

Standaard afwijking van het center of pressure
De standaard afwijking van het COP in mm wordt berekend met behulp van de gemiddelde positie van het COP. Deze uitkomstmaat wordt opgesplitst in anteroposteriore (AP) en in mediaal-laterale (ML) richting. De formule die hiervoor wordt gebruikt is uit eerdere literatuur gehaald.3 De xAP en de xML zijn de positie van het COP en de xAP en de xML zijn de gemiddelde positie van het COP. De waarde N geeft het totale aantal datapunten van het COP aan.
De afgelegde weg van het center of pressure wordt berekend in mm:

\[\text{Afgelegde weg} = \sum_{n=1}^{N-1} \left[(x_{AP(n+1)} - x_{AP(n)})^2 + (x_{ML(n+1)} - x_{ML(n)})^2 \right] \]

De snelheid van het COP in mm/s wordt in zowel AP en ML richting berekend. De formule die hiervoor gebruikt wordt is uit eerdere literatuur gehaald:

\[V_{AP} = \frac{\sum_{n=1}^{N-1} (x_{AP(n+1)} - x_{AP(n)})^2}{T} \]
\[V_{ML} = \frac{\sum_{n=1}^{N-1} (x_{ML(n+1)} - x_{ML(n)})^2}{T} \]

95% van het oppervlak waarbinnen het center of pressure beweegt

De uitkomstmaat van 95% van het oppervlak waarbinnen het COP beweegt wordt berekend in mm². Er wordt een ellips gemaakt die 95% van de datapunten van het COP bevat. De formule voor deze uitkomstmaat wordt uit de literatuur gehaald:

\[\text{Oppervlak} = \pi ab \]
\[a = \sqrt{\frac{3.00(SD_{AP}^2 + SD_{ML}^2 + D)}{3.00(SD_{AP}^2 + SD_{ML}^2 - D)}} \]
\[b = \sqrt{\frac{SD_{AP}^2 + SD_{ML}^2 - D}{(SD_{AP}^2 + SD_{ML}^2) - 4(SD_{AP}^2SD_{ML} - SD_{APML}^2)}} \]
\[D = SD_{AP}^2 + SD_{ML}^2 \]
\[SD_{APML} = \frac{\sum_{n=1}^{N} x_{AP(n)}x_{ML(n)}}{N} \]

De postural sway geeft de schommeling van het lichaam aan in graden per tijdseenheid (°S/S). Deze maat wordt opgesplitst in AP en ML richting. De formule voor deze uitkomstmaat wordt uit de literatuur gehaald.

Data-analyse
Alle data zijn verzameld op 100 Hz en geëxporteerd naar Matlab. De data zijn daarna gefilterd met een zesde orde Butterworth filter, zero-phase low-pass, met een cut-off frequentie van 10 Hz. Het gemiddelde dat Matlab heeft berekend van het aantal herhalingen bij iedere uitkomstmaat wordt gebruikt voor statistische analyse.

Statistiek
Met behulp van SPSS worden de uitkomsten van Matlab berekend. De Paired-Samples T Test wordt gebruikt om de validiteit tussen het WBB en de force plate te bepalen. De betrouwbaarheid wordt berekend met een two-way random model of intra class correlation coëfficiënt.
4. Voorlopige literatuurlijst

5. Planning

6. Persoonlijke leerdoelen afstudeerfase (minimaal 3)

De bewegingstechnoloog kan zelfstandig softwareprogramma’s ontwikkelen en toepassen voor randapparatuur en bewegingstechnologische toepassingen.

De bewegingstechnoloog kan zijn eigen werk, projecten zelfstandig plannen, organiseren, coördineren en evalueren. Hij is flexibel en klantgericht in zijn gedrag en combineert doorzettingsvermogen en ondernemerschap om de vooraf bepaalde doelstelling(en) te bereiken.

De bewegingstechnoloog kan op basis van een probleemstelling een onderzoek opzetten en uitvoeren op bewegingstechnologisch gebied. Dit kan hij zowel in de vorm van een theoretisch onderzoek (literatuurstudie en modelvorming) als in de vorm van een toegepast onderzoek (gebruikersonderzoek).