PROJECT HIGHTECH IN ORTHOPAEDICS IN HET KADER VAN RAAK KENNISUITWISSELING ONDERLING VERBETEREN

De orthopedische techniek maakt een stormachtige ontwikkeling door. Constructies worden steeds lichter, steviger en stabiler. De eisen gesteld aan de orthopedische hulpmiddelen nemen eerder toe dan af en de voorziening dient steeds vaker op basis van specifieke en bewezen werking verantwoord te worden. Dit vraagt van de professional een continue inspanning ten aanzien van innovaties op dit gebied.

Om innovaties te stimuleren in het vakgebied is er door de Fontys Paramedische Hogeschool, opleiding Orthopedische Technologie, een jaar geleden gestart met het project ‘hightech in orthopaedics’. Een project dat in het kader van het RAAK programma wordt uitgevoerd. RAAK staat voor Regionale Aandacht en Actie voor Kenniscirculatie en is een regeling vanuit het Ministerie van OC&W. De doelstelling van deze regeling is om de kennisuitwisseling tussen hoge- scholen, onderzoeksinstellingen en de bedrijven in de regio te verbeteren.

DOELSTELLING ‘HIGHTECH IN ORTHOPAEDICS’

Integratie van technieken en zorg vormt een belangrijke uitdaging voor de regio Brabant die tweemaal zo snel vergrijst als de rest van Nederland. Medical & Care is dan ook één van de maatschappelijke domeinen die door Fontys als strategische keuze is benoemd.

Dit RAAK programma richt zich vooral op het gebruik en de verwerking van wat wel de moderne materialen wordt genoemd zoals prepeg (vezelversterkte kunststof). Met name koolstofvezel is een materiaal dat voor de orthopedische techniek nog veel vragen oplevert.

Het doel van het programma is uitbreiding en doornietwikkeling van kennis en de toepassing hiervan binnen het orthopedisch (schoen) technisch bedrijfsleven.

WERKWIJZE

In de orthopedie worden de twee uitersten ‘techniek en zorg’ verenigd waarbij de klant (lees patiënt), met een zorgvraag altijd het uitgangs- en eindpunt is. Daarbij is een intensieve samenwerking tussen klant, arts en zorgleverancier nodig om een kwalitatief hoogwaardig product te kunnen maken.

Tijdens de eerste bijeenkomsten heeft het bedrijvenconsortium veel aandacht gehad om te bepalen op welke punten de grootste kennisbehoefte lag. Hieruit zijn de volgende deelprojecten bepaald en uitgevoerd door groepen studenten zowel vanuit de voltijdopleiding als vanuit de duale opleiding variant.

1. huidige proces inventariseren
2. aanmeten van orthesen
3. ontwerp orthese, materiaalkeuze en legplan
4. vervaardiging (navervorming) van EVO’s

In nauwe samenwerking met het bedrijfsleven en TNO is gewerkt aan het inzichtelijk krijgen van de bestaande en nieuwe kennis van het productieproces van vooral enkelvoet orthesen.

Een vraagstelling betrof hoe moderne meettechnieken toegepast konden worden op het aanmeten van een enkelvoet orthese. In samenwerking met TNO hebben studentgroepen dit traject in kaart gebracht. En zij hebben door middel van proefne- mingen bekeken of deze innovaties in de orthopedische techniek toegepast konden worden. Als proef is een voet gescand om daarmee een 3D-voetmodel te krijgen.
Daarna is met behulp van algemene software een enkelvoetorthese ontworpen. Het aangepaste 3D-model is vervolgens gebruikt als input voor een *Rapid Manufacturing machine*, bij TNO. In dit geval werd een *Selective Laser Sintering* Machine gebruikt om een model te maken dat daarna voorzien werd van een prepeeg.

Tijdens de afwerking met prepeeg, bij Noppe Orthopedie, zijn verschillende vezelpatronen en legplannen beproefd. Uit deze testen zijn materiaaleigenschappen zoals treksterkte en stijfheid bepaald. Waarden die gebruikt kunnen worden bij het ontwerpen van orthopedische voorzieningen opgebouwd uit dit nieuwe materiaal.

Ook is er onderzoek gedaan naar (na) vervormbaarheid van koolstofvezel materiaal alsmede het combineren van prepegmateriaal met andere materialen zoals thermoplasten. Bij proefnemingen van de navervormingen van thermohardend en naververwarming van het thermoplastisch materiaal zijn negatieve gevolgen waargenomen onder andere een afname van de stijfheid.

RESULTATEN EN CONCLUSIE

De ideeën en inzichten en behoeften zijn door de verschillende bijeenkomsten met de deelnemende bedrijven verspreid, bediscussieerd en in kaart gebracht. Door dit project is er een nieuwe impuls gegeven om bestaande kennis vanuit onderzoeksinstellingen als TNO en Fontys te verspreiden en beschikbaar te maken voor de bedrijven.

Het project heeft geresuleerd in een onderwijsmodule dat deze technieken en de hiervoor benodigde kennis bundelt en beschikbaar stelt voor toekomstige generaties studenten. Er kan gesteld worden dat de verschillende deelprojecten geleid hebben tot een vergroting van de inzichten en kennis in het werken met ‘moderne materialen’. Het ultieme doel, komen tot een zo optimaal ontworpen orthopedisch hulpmiddel, is door dit project weer een klein stapje dichterbij gekomen.

Meer informatie:
Fontys Paramedische Hogeschool
Opleiding Orthopedische Technologie
ing. F.C. Holtkamp M.Sc.
Tel.: (0877) 87 55 10
E-mail: f.holtkamp@fontys.nl
De orthopedische techniek maakt een stornachtige ontwikkeling door. Constructies worden steeds lichter, sterk en stabiel. De eisen gesteld aan de orthopedische hulpmiddelen nemen eerder toe dan af en de voorziening dient steeds vaker op basis van specificaties en bewezen werking verantwoord te worden. Dit vraagt van de professional een continue inspanning ten aanzien van innovaties op dit gebied.

Om innovaties te stimuleren in het vaksgebied is er door de Fontys Paramedische Hogeschool, opleiding Orthopedische Technologie, een jaar geleden gestart met het project *high-tech in orthopaedics*. Een project dat in het kader van het RAAK programma wordt uitgevoerd. RAAK staat voor Regionale Aandacht en Actie voor Kenniscirculatie en is een regeling vanuit het Ministerie van OCW. De doelstelling van deze regeling is om de kennisuitwisseling tussen hogescholen, onderzoeksinstituten en de bedrijven in de regio te verbeteren.

DOELSTELLING 'HIGH-TECH IN ORTHOPAEDICS'

Integratie van techniek en zorg vormt een belangrijke uitdaging voor de regio Brabant die tweemaal zo snel vergrijst als de rest van Nederland. Medical & Care is dan ook één van de maatschappelijke domeinen die door Fontys als strategische keuze is benoemd.

Dit RAAK programma richt zich vooral op het gebruik en de verwerking van wat wel de moderne materialen wordt genoemd zoals prepegh (vezelversterkte kunststof). Met name koolstofvezel is een materiaal dat voor de orthopedische techniek nog veel vragen oplevert. Het doel van het programma is uitbreiding en doorontwikkeling van kennis en de toepassing hiervan binnen het orthopedisch (schoen) technisch bedrijfsleven.

WERKWIJZE

In de orthopedie worden de twee uitersten ‘techniek en zorg’ verenigd waarbij de klant (leeu: patiënt), met een zorgvraag altijd het uitgangs- en eindpunt is. Daarbij is een intensieve samenwerking tussen klant, arts en zorgleverancier nodig om een kwalitatief hoogwaardig product te kunnen maken. Tijdens de eerste bijeenkomsten heeft het bedrijfscorsoort veel aandacht gehad om te bepalen op welke punten de grootste kennisbehoefte lag. Hieruit zijn de volgende deelprojecten bepaald en uitgevoerd door groepen studenten zowel vanuit de voltijdopleiding als vanuit de duale opleiding variant.

1. huidige proces inventariseren
2. aanmeten van orthesen
3. ontwerp orthese, materiaalkeuze en legplan
4. vervaardiging (navervorming) van EVO's

In nauwe samenwerking met het bedrijfseleven en TNO is gewerkt aan het inzichtelijk krijgen van de bestaande en nieuwe kennis van het productieprocess van vooral enkelvoet orthesen.

Een vraagstelling betrof hoe moderne meettechnieken toegepast konden worden op het aanmaken van een enkelvoet orthese. In samenwerking met TNO hebben studenten groepen dit traject in kaart gebracht. En zij hebben door middel van proefnemingen bekeken of deze innovaties in de orthopedische techniek toegepast konden worden. Als proef is een voet gesand om daarmee een 3D-voetmodel te krijgen.